Edge windowing of OFDM based systems

Active Publication Date: 2016-04-19
UNIV OF SOUTH FLORIDA RES FOUND
View PDF22 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, rectangular windowing of OFDM symbols produces high si

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Edge windowing of OFDM based systems
  • Edge windowing of OFDM based systems
  • Edge windowing of OFDM based systems

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0016]Disclosed herein are various embodiments of methods related to edge windowing of orthogonal frequency division multiplexing (OFDM) based systems. Adaptive windowing of the orthogonal frequency division multiplexing (OFDM) signals may be used to shape the spectrum of the transmitted signal, thereby limiting interference of adjacent bands.

[0017]In conventional windowing, the same windowing is applied to all subcarriers of an OFDM symbol. As illustrated in FIG. 1(a), the OFDM symbol includes a data portion 106 (over period ND) and a cyclic prefix 109 (over period NCP) to eliminate intersymbol interference (ISI) and intercarrier interference (ICI). In addition, an extra windowing time (or sample period) NW 112 is added between the two consecutive ODFM symbols 103. The transition between two consecutive ODFM symbols 103 during NW 112 is smoothed by windowing in order to suppress the side lobes. While the subcarriers of the previous OFDM symbol 103a fade out over NW 112, the subcarrier

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Various methods and systems are provided for edge windowing of orthogonal frequency division multiplexing (OFDM) systems. In one example, among others, a method includes obtaining an edge windowing portion by reducing a cyclic prefix size for a quantity of edge subcarriers in an OFDM symbol and reducing side lobes by applying a windowing function to the edge subcarriers. In another example, a device includes a separator capable of dividing subcarriers of an OFDM symbol into first and second subcarrier groups, a first CP adder capable of obtaining a windowing portion by adjusting a cyclic prefix size of the first subcarrier group, and a first windower capable of reducing side lobes by applying a windowing function to the first subcarrier group. In another example, a method includes determining a RMS delay spread of a mobile station and scheduling a subcarrier based at least in part upon the RMS delay spread.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner UNIV OF SOUTH FLORIDA RES FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products