Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1 results about "Nuclear fusion" patented technology

Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in atomic "binding energy" between the atomic nuclei before and after the reaction. Fusion is the process that powers active or "main sequence" stars, or other high magnitude stars.

Simulation method for controlling novel classic tearing mode through resonance magnetic disturbance in tokamak

ActiveCN110232205AGood combination experimentImprove computing efficiencyDesign optimisation/simulationSpecial data processing applicationsNumerical stabilityMagnetic disturbance
The invention belongs to numerical simulation of discharge of a Tokamak device in the field of magnetic confinement controlled nuclear fusion, and relates to a simulation method for controlling a newclassic tearing mode through resonance magnetic disturbance in Tokamak. According to the current data in the Tokamak upper coil assembly, the Biot-Savart law is used for solving an induced magnetic field; integrating is performed to obtain an expression of a polar magnetic flux corresponding to the induced magnetic field according to approximation of a large ring diameter ratio; a Fourier transform pseudo-spectrum method is utilized to transform magnetic flux into components of different moduli to obtain three-dimensional distribution of the components in a tokamak median form, the three-dimensional distribution is coupled into a magnetofluid equation, and the Crank-Nicosolson method is utilized to solve the evolution of the magnetic field with the resonance magnetic disturbance along with time, so that the influence of the magnetic field on the new classical tearing mode is studied. The method can simulate the physical processes of new classic mode locking, inhibition, field penetration and the like of the tearing mode, is high in calculation efficiency and relatively good in numerical stability, and is an efficient numerical method capable of accurately simulating an experiment.
Owner:DALIAN UNIV OF TECH

Popular searches

Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products