Scintillator panel and radiation detector

Active Publication Date: 2017-08-17
TORAY IND INC
View PDF8 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0030]According to the present invention, a scintillator panel having a high lumina

Problems solved by technology

However, a method in which a phosphor is packed into cells separated by preformed barrier ribs has the problem that scattering of emitted light cannot be sufficiently reduced, and thus the amount of emitted light absorbed in the barrier ribs increases, leading to a reduction in luminance of a scintillator panel.
On the other hand, a single crystal phosphor is more desir

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Scintillator panel and radiation detector
  • Scintillator panel and radiation detector
  • Scintillator panel and radiation detector

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0150]0.11 g / cm2 of a CsI:Tl powder was supplied onto a base material provided with grid-like barrier ribs, and was flattened by a squeegee, and put in a Nylon (registered trademark) bag together with the base material, and the opening of the bag was thermally welded to seal the bag. The bag was set in an isostatic pressure press apparatus (manufactured by Kobe Steel, Ltd.), and the powder was press-packed at a pressure of 400 MPa and a temperature of 25° C. to prepare a scintillator panel 1.

[0151]The CsI:TI packed in cells had a grain boundary. The CsI:TI packed in the cells had a porosity of 5% and an average particle size of 25 μm.

[0152]The prepared scintillator panel 1 was set in a FPD (PaxScan3030; manufactured by Varian Company) to prepare a radiation detector. The radiation detector was irradiated with an X-ray with a tube voltage of 60 kVp from the substrate side of the scintillator panel 1, and the amount of light emitted from a scintillator layer was detected by the FPD to

example 2

[0153]Except that in press-packing, the pressure was 60 MPa, and the temperature was 150° C., the same procedure as in Example 1 was carried out to prepare a scintillator panel, and evaluation was performed. The phosphor packed in cells of the obtained scintillator panel 2 had a grain boundary, and had a porosity of 2% and an average particle size of 35 μm. The luminance of the scintillator panel 2 was 110 in terms of a relative value where the luminance of the scintillator panel 1 is 100. Thus, the scintillator panel 2 exhibited a good luminance. The scintillator panel 2 also exhibited a good image sharpness.

example 3

[0154]The reflecting layer paste was applied to a surface of a base material provided with grid-like barrier ribs, and was left standing for 5 minutes, and the deposited reflecting layer paste was then scraped off by a rubber squeegee with a hardness of 80°. Thereafter, drying was performed in hot air ovens at 80° C.° and 130° C. for 30 minutes each to form a reflecting layer on the surface of the barrier rib and on portions where the barrier rib was not formed. Thereafter, in the same manner as in Example 1, a CsI:Tl powder was supplied, and press-packed to prepare a scintillator panel 3, and evaluation was performed.

[0155]The phosphor packed in cells of the obtained scintillator panel 3 had a grain boundary, and had a porosity of 5% and an average particle size of 25 μm. The luminance of the scintillator panel 2 was 130 in terms of a relative value where the luminance of the scintillator panel 1 is 100. Thus, the scintillator panel 2 exhibited a good luminance. The scintillator panel

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Provided is a scintillator panel which can be more easily and conveniently manufactured at a low cost and which has a high luminance and a high sharpness. The scintillator panel according to the present invention. includes: a substrate; barrier ribs placed on the substrate; and a phosphor packed into cells separated by the barrier ribs, the phosphor having a porosity of 20% or less and having a grain boundary,

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner TORAY IND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products