Switch feel measurement apparatus

a technology of feel and measurement apparatus, which is applied in the direction of apparatus for force/torque/work measurement, force measurement, instruments, etc., can solve the problems of inconvenient reconfiguring and re-aligning, expensive and time-consuming ways to measure the feel of switches, and conventional approaches that do not produce quantitative, objective, repeatable means for completely measuring the feel of switches. , to achieve the effect of minimizing the number of different parts required, minimizing the time needed to chang

Active Publication Date: 2008-05-20
FORD GLOBAL TECH LLC
View PDF6 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present inventive technology provides improved methods for accurately measuring switch settings with multiple ends without requiring complex hardware components like motors or sensors. This makes it easier to configure and adjust these systems on various types of equipment such as switches used at home or offices. Additionally, there are also fewer options available within each terminal device itself allowing for greater versatility in terms of how many different devices they may have.

Problems solved by technology

The technical problem addressed in this patents is how accurately determine the touch feeling experienced when switching mechanical parts like buttons used within cars without sacrificial equipment costs or requiring extensive training beforehand. Existing methods involve manually testing switches made up of several components - including connectors, pins, springs, etc., making it difficult to compare their performance against other similar ones due to differences in response behavior caused by factors like material composition and thickness variations over time.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Switch feel measurement apparatus
  • Switch feel measurement apparatus
  • Switch feel measurement apparatus

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0035]FIG. 2 illustrates the end effector 58, driven and controlled by the measurement unit 50 and switch measurement system 20, such as that disclosed in FIG. 1. This particular end effector 58 is employed to measure a thumbwheel 59 of a thumbwheel switch 60, which includes a switch base 61 mounted in the switch mounting support 62. Typically, in the past, thumbwheel switches were not measured because hardware capabilities did not exist for obtaining an accurate measurement.

[0036]The mounting hub 57 is mounted to the force / torque sensor 56, which includes an electrical connection 31 to the force / torque sensor interface (shown in FIG. 1). The end effector 58 also includes a short transverse shaft 68, mounted in and extending from a transverse mounting bore 69 in the mounting hub 57. This shaft 68 may be secured by a set screw or other conventional means (not shown). An extension bar 70 mounts to and extends from the short transverse shaft 68 parallel to the measurement axis 66. An

third embodiment

[0044]FIGS. 5 and 6 illustrate the end effector 258 for measuring a pivot arm 259 of a multifunction stalk switch 260. This embodiment has many elements in common with that of the previous embodiments, and to avoid unnecessary repetition of the description, the same reference numerals have been used for similar elements but falling within the 200-series. This embodiment employs a different end effector 258 that is particularly advantageous for measuring torque versus angular displacement for movement of the pivot arm 259 relative to the switch base 261.

[0045]A typical multifunctional stalk switch 260 to be measure has two pivoting degrees of freedom (e.g., headlamp flash and turn signal), plus at least one end rotary knob 279 (another degree of freedom) for other controls. In order to obtain meaningful torque versus annular displacement curves, the different degrees of freedom are measured independently. The end effector 258 shown in FIGS. 5 and 6 is for measuring pivoting of the pivot

fourth embodiment

[0048]FIGS. 7-12 illustrate an end effector kit 385 and some examples of various components of the kit being employed to measure different types of pivoting and rotary switches, according to a The end effector kit 385 and its components may be employed with a switch measuring system 20 such as that shown in FIG. 1. This embodiment has many elements in common with that of the previous embodiments, and to avoid unnecessary repetition of the description, the same reference numerals have been used for similar elements but falling within the 300-series. This end effector kit 385 is particularly advantageous for being able to quickly switch between different components of the kit to form various end effector assemblies that are well suited to generate accurate torque versus angular displacement curves for the particular type of switch being measured. Some examples of types of pivoting and rotary switches that may be measured include thumbwheel, push-pull, rocker, rotary knob, stalk pivot, a

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A measuring system that relate to the measurement of relatively small one degree of freedom mechanisms, such as pivoting and rotary switches, is disclosed. In particular end effectors and a kit for assembling various end effector assemblies is disclosed, that allow for accurate measurement of torque versus angular displacement curves for various types of pivoting and rotary switches.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner FORD GLOBAL TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products