High pressure pump having plunger

Active Publication Date: 2006-07-20
DENSO CORP
View PDF8 Cites 37 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013] Thus, an amount of fuel flowing into the compression chamber can be restricted from being excessively insufficient due to decrease in pressure

Problems solved by technology

In this condition, when pressure in the inlet chamber decreases in the intake stroke as the plunger downwardly moves, fuel may not be sufficiently drawn from the inlet chamber into the compression chamber.
Consequently, an amount of fuel discharged from the high pressure pump may become insufficient.
Furthermore, when fuel returns from the compression chamber into the inlet chamber as the plunger upwardly moves, pressure in the inlet chamber may increase.
As the plun

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0056] As shown in FIG. 3, in a high pressure pump 70 of the second embodiment, an annular plate 72 is provided on the side of the cylinder 22 with respect to the oil seal 19. The annular plate 72 radially surrounds the small diameter portion 16 of the plunger 14. The inner circumferential periphery of the annular plate 72 and the outer circumferential periphery of the small diameter portion 16 form a small gap 74 therebetween, such that the plate 72 does not disturb reciprocation of the small diameter portion 16. In this structure, even when dust is formed in the sliding part between the sliding portion 15 and the cylinder 22 through the sliding operation therebetween, the gap 74 can restrict this dust from intruding into another sliding part between the oil seal 19 and the small diameter portion 16, for example. Thus, the oil seal 19 can be protected from being damaged.

Example

[0057] As shown in FIG. 4, in a high pressure pump 80 of the third embodiment, a filter 82 is provided midway through the communication passage 310 to remove foreign matters. The filter 82 restricts foreign matters, which is contained in fuel supplied into the high pressure pump 80, from intruding into the sliding part between the oil seal 19 and the small diameter portion 16. In this structure, the oil seal 19 can be protected from being damaged due to intrusion of foreign matters.

Example

[0058] As shown in FIG. 5, in a high pressure pump 90 of the fourth embodiment, the fuel chamber 308 is formed midway through the communication passage 310, instead of being formed around the small diameter portion 16 of the plunger 14. The fuel chamber 308 communicates with a lower space 312 located on the lower side of the step 17 between the sliding portion 15 and the small diameter portion 16. In this structure, even when the location of the fuel chamber 308 is changed, decrease in pressure of fuel in the inlet chamber 302 can be reduced, and pulsation, which arises in pressure of fuel in the inlet chamber 302 as the plunger 14 reciprocates, can be reduced, similarly to the first embodiment.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A high pressure pump draws fluid from a fluid inlet into a compression chamber through an inlet chamber. The high pressure pump has a fluid chamber that communicates with the fluid inlet via the inlet chamber. The high pressure pump includes a plunger and a cylinder. The plunger draws fluid from the inlet chamber into the compression chamber when the plunger moves in a drawing direction. The plunger is capable of pressurizing fluid in the compression chamber when the plunger moves in a pressurizing direction. The cylinder movably supports the plunger therein. When the plunger moves in the drawing direction, fluid in the inlet chamber is drawn into the compression chamber, so that fluid flows from the fluid chamber into the inlet chamber.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner DENSO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products