Separation of no-carrier-added thallium radionuclides from no-carrier-added lead and mercury radionuclides by dialysys

Inactive Publication Date: 2010-02-18
SAHA INSTITUTE OF NUCLEAR PHYSICS
View PDF10 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]Thus the main object of the present invention is to provide a simple, environment friendly, cost effective, ra

Problems solved by technology

Though in this process less chemicals were used, but collection and culture of the algae throughout the year is a difficult ta

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Separation of no-carrier-added thallium radionuclides from no-carrier-added lead and mercury radionuclides by dialysys
  • Separation of no-carrier-added thallium radionuclides from no-carrier-added lead and mercury radionuclides by dialysys
  • Separation of no-carrier-added thallium radionuclides from no-carrier-added lead and mercury radionuclides by dialysys

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0018]A gold target is irradiated with 48 MeV 7Li beam at BARC-TIFR Pelletron, Mumbai, India. No-carrier added radionuclides 197Hg, 198-200Tl, 199,200Pb were produced in the gold matrix. After production, no-carrier-added radionuclides are separated from bulk gold by liquid-liquid extraction using 0.1 M TOA and 1 M HNO3 as organic and aqueous phase respectively. The aqueous phase containing 197Hg, 198-200Tl, 199,200Pb is kept in a dialysis sac (D9777, Dialysis Tubing Cellulose, Membrane, size: 25 mm×16 mm. SIGMA-ALDRICH). Dialysis sac is further kept in a 200 mL glass beaker filled with MQ water. Dialysis is carried out with varying temperature of water, 0° C., 20° C. (room temperature) and 50° C. The pH of the aqueous solutions containing no-carrier-added radionuclides is also varied. It has been found that in neutral medium and at 20° C. / 50° C. only 199Tl radionuclides are coming out of the dialysis sac and all other radionuclides are confined in the dialysis sac. The separation is

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Molar densityaaaaaaaaaa
Volumeaaaaaaaaaa
Login to view more

Abstract

A process for separation of no-carrier-added thallium radionuclide from no-carrier-added lead and mercury comprising providing a solution of no-carrier-added thallium radionuclide and no-carrier-added lead and mercury to dialysis. By this method separation of 199Tl radionuclides has also been achieved in presence of macro quantity of inactive thallium, which is as high as 10 mM. The method is capable of being used in Medical industry, diagnosis of cardiac diseases by 201Tl or 199Tl and all other industries where trace amount of thallium separation is required from mercury and lead.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner SAHA INSTITUTE OF NUCLEAR PHYSICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products