Heat dissipation apparatus and outdoor communication device

Inactive Publication Date: 2012-11-22
HUAWEI TECH CO LTD
View PDF17 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]From the above technical solution, it can be seen that, in embodiments, through modular design, the frame of a heat dissipation apparatus may have a plurality of lattices in each of which a thermosiphon heat exchange unit can be embedded, the number of the embedded thermosiphon heat exchange units can be increased or decreased at any time depending on heat dissipation performance that is required, the synchronized update of the heat dis

Problems solved by technology

Because these outdoor communication devices produce heat in their operation, and they can only operate appropriately in a certain range of temperatures, heat dissipation apparatus must be disposed for these outdoor communication devices.
After update, there may be a change in the working power of an outdoor communication device, as a result, a heat dissipation apparatus provided in the original construction of a communication network may be no longer suitable for the updated outdoor communication device.
Presently, in the design of a heat dissipation apparatus, if the probability of sequential updates of an outdoor communication device is considered, the heat dissipation apparatus has to be designed according to the working power when a maximum number of servi

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Heat dissipation apparatus and outdoor communication device
  • Heat dissipation apparatus and outdoor communication device
  • Heat dissipation apparatus and outdoor communication device

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[0020]FIG. 2 is a schematic structural diagram of an unassembled heat dissipation apparatus according to As shown in FIG. 2, the heat dissipation apparatus at least comprises: one or more thermosiphon heat exchange units 1, one or more first partitions 2, and a frame 3 having at least two lattices. Particularly, each of the one or more thermosiphon heat exchange units 1 is embedded in one lattice of the at least two lattices. Each lattice of the at least two lattices having no thermosiphon heat exchange unit 1 embedded is disposed with the first partition 2 to partition the lattice into an upper portion and a lower portion, where the first partition 2 is detachable.

[0021]Based on the above technical solution, the heat dissipation apparatus may further comprise: at least a fan unit 4. Particularly, each fan unit 4 is embedded in a half lattice constructed by the frame 3 and a first partition 2.

embodiment 2

[0022]Hereinafter, through Embodiment 2, a detail description will be given for the thermosiphon heat exchange unit 1 of the above technical solution.

[0023]FIG. 3 is a schematic structural diagram of a thermosiphon heat exchange unit according to Embodiment 2. In the Embodiment 2, the thermosiphon heat exchange unit 1 is an enhanced heat exchange fin type thermosiphon tube. As shown in FIG. 3, each of the one or more thermosiphon heat exchange units 1 comprises: a condensation end collection pipe 11 in the upper portion of the thermosiphon heat exchange unit, a vapor end collection pipe 12 in the lower portion of the thermosiphon heat exchange unit, at least two cooling tubules 13 which are connected to the vapor end collection pipe 12 and the condensation end collection pipe 11, cooling fins 14 evenly distributed between every two cooling tubules 13, and a second partition 15 partitioning the thermosiphon heat exchange unit 1 into an upper portion and a lower portion.

[0024]The cooling

embodiment 3

[0029]In practical applications, the number of the thermosiphon heat exchange units 1 is determined according to required heat dissipation performance. W hen the outdoor communication device where the heat dissipation apparatus is located is updated, first partitions 2 in lattices having no thermosiphon heat exchange units 1 embedded currently can be removed to embed new thermosiphon heat exchange units 1, so that heat dissipation performance of the heat dissipation apparatus can be improved. In Embodiment 3, only 2 thermosiphon heat exchange units 1 are provided as an example.

[0030]Furthermore, the number of fan units 4 also can be determined according to required heat dissipation performance. When it is required to improve heat dissipation performance, newly added fan units 4 can be embedded in half lattices constructed by the frame 3 and first partitions 2. Also, according to the strength of air flow in the internal circulation air passage and the external circulation air passage, t

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A heat dissipation apparatus comprises: one or more thermosiphon heat exchange units, one or more first partitions, and a frame having at least two lattices; wherein, each of the one or more thermosiphon heat exchange units is embedded in one lattice of the at least two lattices; each lattice of the at least two lattices having no thermosiphon heat exchange unit embedded is disposed with the first partition to partition the lattice into an upper portion and a lower portion, where the first partition is detachable. The outdoor communication device comprises the heat dissipation apparatus and one or more service board. Through a modular design, the number of the embedded thermosiphon heat exchange units can be increased or decreased at any time depending on heat dissipation performance that is required.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner HUAWEI TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products