Method for introducing pharmaceutical drugs and nucleic acids into skeletal muscle

Inactive Publication Date: 2000-08-29
INOVIO
View PDF13 Cites 278 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

Determining the Effect of Voltage on Transfection Efficiency
EDL and soleus muscles of Wistar rats (245-263 grams) were injected with 25 .mu.g of RSV driven luciferace plasmid DNA in 50 .mu.l 0.9% NaCl. Shortly after injection, the injected muscles were electrically stimulated using the following parameters: 100 Hz, 100 bipolar pulses in each train of 200 .mu.s duration, voltage varied from between 0 to 47.5. Muscles were removed 4 days post injection and stimulation, homogenized in Promega (Madison, Wis.) luciferace assay buffer and luminescence was measured according to manufacturer's protocols. Macintosh computer and a LabWiev acquisition program were used to capture the first voltage pulses. Recordings were done in parallel with the stimulation electrodes. The voltage measurements were done manually on prints as the average of the maximal voltage of 10 pulses approximately 100 ms after onset of stimulation.
As illustrated in FIG. 13a, there was a pronounced increase in transfection efficiency with increased voltage. As illustrated in FIG. 13b, under the conditions of this experiment, muscles stimulated with 13 volts or higher showed 40-fold greater luciferace activity compared to muscles stimulated with 5 volts or less.
Soleus muscles of Wistar rats (200-270 grams) were injected with 50 .mu.g of DNA plasmid containing the .beta.-galactosidase gene in 50 .mu.l 0.9% NaCl. Shortly after injection, the muscles were electrically stimulated using th

Problems solved by technology

Despite these new discoveries, a major obstacle facing the medical profession is how to safely deliver effective quantities of these agents to patients to treat disease or for genetic immunization.
First, a large percent of orally or intravenously delivered drugs are degraded by the body before arriving at the target organ or cells.
Second, oral and intravenous drug and gene delivery is non-specific.
Currently, however, there is no non-viral

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

Stimulated Versus Unsimulated Muscles

Transfection efficiencies were determined by injecting skeletal muscles with the pSV40-luc reporter construct into the soleus muscle. Three days after injection, the muscles were removed and luciferase activity was measured using the Promega Luciferase Assay System (Madison, Wis.) according to manufacturer's protocols. Unstimulated EDL muscles from the same rats were used as control. The data are shown below in Table 1.

Example

Example 2

Transfection Efficiency Versus Frequency

Rats were injected with 50 .mu.l of 1 mg / .mu.l of a plasmid carrying lac Z gene. Immediately following injection, electrodes were placed between 2-3 mm apart and the muscle was stimulated with the following stimulation parameters: voltage=30 volts; pulse duration=0.2 ms (total 0.4 ms, bipolar); trains=30, 1 second on 1 second off for 1 minute. Transfected fibers were counted from a 1 mm slice from middle of muscle. The number of transfected fibers is shown below in Table 2 and illustrated in FIG. 7. These data also illustrate that the method of the present invention transfects more than just surface muscle fibers; muscle fibers several cell layers deep are also transfected.

Example

Example 3

Transfection Efficiency Versus Pulses

Soleus muscles of Wistar rats (200-270 grams) were injected with 50 .mu.g of RSV luciferase DNA plasmid in 50 .mu.l 0.9% NaCl. Shortly after injection, the muscles were electrically stimulated using the following parameters: 1000 Hz, between 0-1000 bipolar pulses of 200 .mu.l duration in each train were applied to the muscle 30 times over a period of 1 minute. Muscles were removed 3 days after transfection and frozen in liquid nitrogen. Cryostat sections were taken from the of the muscles and stained with Hematoxolin, Eosin and Safran (see Example 9). The remaining pieces were homogenized as described in Example 4 below. As illustrated in FIGS. 10-12, transfection efficiency increased with the number of pulses delivered to the muscle.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Timeaaaaaaaaaa
Timeaaaaaaaaaa
Dielectric strengthaaaaaaaaaa
Login to view more

Abstract

A method is disclosed for delivering molecules such as pharmaceutical drugs and nucleic acids into skeletal muscle in vivo. The pharmaceutical drug or nucleic acid is first injected into the muscle at one or multiple sites. Immediately, or shortly after, injection, electrodes are placed flanking the injection site and a specific amount of electrical current is passed through the muscle. The electrical current makes the muscle permeable, thus allowing the pharmaceutical drug or nucleic acid to enter the cell. The efficiency of transfer permits robust immune responses using DNA vaccines and produces sufficient secreted proteins for systemic biological activity to be observed.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner INOVIO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products