Thermal rectifying antenna complex (TRAC)

Pending Publication Date: 2018-09-13
UNIV OF SOUTH FLORIDA
View PDF0 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017]The novel structure includes a rectenna having, in sequence, an antenna and one or more rectifying diodes, and a radiator secured between the rectenna and a source of thermal energy. The radiator has a predetermined design and material composition, such that the radiator emits one or more lobes of coherent narrowband electromagnetic waves when heat transfers from the source of thermal energy to the radiator. The antenna is configured to capture electromagnetic energy from one of the lobes of coherent narrowband electromagnetic waves emitted from the radiator. The antenna is able to capture the narrowband electromagnetic waves emitted from the radiator and converts the electromagnetic waves into alternating current. The diodes then convert the alternating current into di

Problems solved by technology

The disclosed approach, however, does not provide a means of capturing thermal energy in near field applications, and is also inefficient.
Near field applications are more difficult because near field radiation is scattered.
Broadband antennas are achievable, although with limited efficiency as compared to narrowband antennas.
In addition, it has proven difficult to also achieve broadband rectifying diodes in the terahertz regime.
Broadband means there are a large number of wavelengths experienced at the antenna, each wavelength with a portion of the overall energy, oscillatin

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0035]In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part thereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.

[0036]The present invention provides a novel method and device for capturing and converting thermal energy to electrical energy. The device converts thermal radiation into an alternating current (AC) and then converts the AC into a direct current (DC). All matter emits electromagnetic (EM) radiation at temperatures above absolute zero. The frequency and radiance of the EM radiation is described by Planck's law. Planck's law describes the distribution of radiance across a range of frequencies for a black body in thermal equilibrium at a particular temperature. Wien's displacement law pr

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method and device to collect and convert thermal energy from the surrounding environments to produce usable electric power. The device includes a rectenna that is preferably a narrow bandwidth rectenna. In an embodiment, the rectenna comprises a rectenna complex, which is, in sequence, a high gain antenna, optional matching circuits, an optional narrow bandpass filter, and one or more rectifying diodes. An embodiment may include multiple arrays of linked nanoscale rectenna complexes. When linked in arrays using preselected bandwidths in the infrared and near infrared spectral regions, the rectenna complex acts as a thermally responsive collector capable of extracting heat energy from its surrounding environment to produce usable electric power.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner UNIV OF SOUTH FLORIDA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products