Methods and compositions for interference with DNA polymerase and DNA synthesis

Active Publication Date: 2020-07-14
HUANG ZHEN
View PDF42 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]Disclosed are methods and compositions for inhibiting DNA synthesis in a cell. The method comprises bringing into contact RNA and the cell. The RNA can be any RNA, such as whole cell RNA, whole cell mRNA, whole cell ribosomal RNA, whole cell transfer RNA, synthetic RNA, recombinant RNA, modified RNA,

Problems solved by technology

In some forms, inhibition of DNA syn

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods and compositions for interference with DNA polymerase and DNA synthesis
  • Methods and compositions for interference with DNA polymerase and DNA synthesis
  • Methods and compositions for interference with DNA polymerase and DNA synthesis

Examples

Experimental program
Comparison scheme
Effect test

example 1

RNA Interference with DNA Polymerase and Synthesis

[0159]RNA can regulate many biological activities, including transcription and translation in cells. However, it was unknown whether RNA can directly affect DNA polymerization. It was discovered that RNA can directly interfere with DNA synthesis by altering DNA polymerase activity and turning DNA polymerase into deoxyribonucleoside triphosphate diphosphatase (dNTP-DPase). This example details the discovery and analysis of these effects of RNA on DNA polymerases. It was found that DNA polymerases of the A, B, C, and X families generally have similar dNTP-DPase activity. Moreover, it was observed that though extra RNA is lethal to cells, addition of dNTPs can rescue the cells. Furthermore, the dNTP-DPase competes with DNA polymerase for dNTPs. It was found that when the dNTP level in cell was relatively low, the dNTP-DPase activity shut down cellular DNA synthesis by hydrolyzing dNTPs. However, when the dNTP level in cell was relatively h

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Disclosed are methods and compositions for inhibiting DNA synthesis in a cell using RNA. Inhibition of DNA synthesis by RNA can be used, for example, in analytical methods, as a research tool to affect cells under study, to synchronize cell cycle in a cell culture, and to inhibit cell growth. For example, inhibition of DNA synthesis in cancer cells can be used to inhibit cancer cells and treat cancer. The RNA can be any RNA, such as whole cell RNA, whole cell mRNA, whole cell ribosomal RNA, whole cell transfer RNA, synthetic RNA, recombinant RNA, modified RNA, or a combination. The composition can comprise RNA and a pharmaceutically acceptable carrier or RNA, a targeting molecule, and a pharmaceutically acceptable carrier. The targeting molecule can be a tumor-targeting peptide.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner HUANG ZHEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products