Interrogation network patches for active monitoring of structural health conditions

a technology of active monitoring and diagnostic network, applied in the field of diagnostic network patch systems for monitoring structural health conditions, can solve the problems of inability to provide effective on-line methods to implement a reliable sensory network system, time-consuming and expensive, and inability to accommodate a large number of actuator arrays

Inactive Publication Date: 2007-01-18
ADVANCED STRUCTURE MONITORING
View PDF34 Cites 40 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patented technology describes devices used to monitor structures' physical condition during their use period. It involves placing certain components within them called pads inside a special case filled with non-conducting materials like rubber. By measuring how well these paddings behave under pressure they can be infer whether there may have any issues related to its performance.

Problems solved by technology

Technological Problem: Existing Structure Detections System uses various types of sensings like pressure sensors but none offer sufficient accuracy due to factors including environmental influences, limited applicability, difficulty in integrating them within already established infrastructure, and potential safety hazards associated with the use of external tools. There also exist challenges related to maintaining long-term reliance over multiple generations of sensitized networks without requiring manual laborious replacements.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Interrogation network patches for active monitoring of structural health conditions
  • Interrogation network patches for active monitoring of structural health conditions
  • Interrogation network patches for active monitoring of structural health conditions

Examples

Experimental program
Comparison scheme
Effect test

embodiment 180

[0065]FIG. 1H is a schematic side cross-sectional view of an alternative embodiment 180 of the patch sensor 150 of FIG. 1E. As illustrated, the patch sensor 180 may include: a bottom substrate 182; a top substrate 184; a hoop layer 198; a piezoelectric device 190; top and bottom buffer layers 192 and 194; and the piezoelectric device 196. For simplicity, a pair of wires connected to the piezoelectric device 190 is not shown in FIG. 1H. The piezoelectric device 190 may include: a piezoelectric layer 196; a bottom conductive flake 194; and a top conductive flake 192. The functions and materials for the components of the patch sensor 180 may be similar to those of their counterparts of the patch sensor 150.

[0066] The hoop layer 198 may have one or more sublayers 197 of different dimensions so that the outer contour of the hoop layer 198 may match the geometry of cavity 174. By filling the cavity 174 with sublayers 197, the adhesive material may not be accumulated during the curing process

embodiment 318

[0078]FIG. 3C a schematic top cut-away view of the optical fiber coil 308 contained in the optical fiber patch sensor of FIG. 3A, illustrating a method for rolling the optical fiber cable 312. As shown in FIG. 3C, the outermost loop of the optical fiber coil 308 may start with one end 310a while the innermost loop may end with the other end 310b. FIG. 3D a schematic top cut-away view of an alternative embodiment 318 of the optical fiber coil 308 shown in FIG. 3C. As shown in FIG. 3D, the optical fiber cable 322 may be folded and rolled in such a manner that the outermost loops may start with both ends 320a-b. The rolled optical fiber cable 322 may be covered by a coating layer 319.

[0079] It is noted that the optical fiber coils 308 and 318 show in FIGS. 3C-D may be attached directly to a host structure and used as optical fiber coil sensors. For this reason, hereinafter, the terms “optical fiber coil” and “optical fiber coil sensor” will be used interchangeably. FIGS. 3E-F are alternat

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Apparatus for monitoring structural health conditions of structures. The apparatus includes a piezoelectric device that has a bottom cover plate, piezoelectric rings concentrically disposed with respect to an axis and positioned on the bottom cover plate, and concentric filler rings made from an electrically insulating material. Each of the piezoelectric rings is interposed between two adjacent filler rings. The piezoelectric device also includes electrical connection means for communicating electrical signals to the piezoelectric rings and a top cover plate that is positioned over the piezoelectric rings and filler rings. The electrical connection means are operative to transmit electrical signals that cause one or more of the piezoelectric rings to generate waves or transmit electrical signals developed by one or more of the piezoelectric rings in response to the waves.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner ADVANCED STRUCTURE MONITORING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products