Measurement support device, endoscope system, processor for endoscope system

a technology of endoscope system and support device, which is applied in the direction of television system, image enhancement, instruments, etc., can solve the problems of complex system configuration and processing, high burden on the subject, and often irregular subject matter, and achieve the effect of simple configuration

Active Publication Date: 2019-10-03
FUJIFILM CORP
View PDF0 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The technical effect of this patented technology is that it allows for precise indication on an endoscopic scope system by providing a simplified display of the pointer.

Problems solved by technology

The technical problem addressed in this patent is how to accurately measure distances between subjects and calculate their sizes based on their apparent dimensions. This requires precise measurements of the subject's size and shape, along with accurate calculations of the subject's size and orientation relative to the device being tested.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Measurement support device, endoscope system, processor for endoscope system
  • Measurement support device, endoscope system, processor for endoscope system
  • Measurement support device, endoscope system, processor for endoscope system

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0061]FIG. 1 is an external view illustrating an endoscope system 10 (a measurement support device, an endoscope system, and a processor for an endoscope system) related to a first embodiment, and FIG. 2 is a block diagram illustrating the configuration of main parts of the endoscope system 10. As illustrated in FIGS. 1 and 2, the endoscope system 10 comprises an endoscope body 100 (endoscope), a processor 200 (processor for an endoscope system), a light source device 300, and a monitor 400 (display device).

[0062]

[0063]The endoscope body 100 comprises a proximal operating part 102 (operating part), and an insertion part 104 (insertion part) provided continuously with at the proximal operating part 102. An operator grips the proximal operating part 102 to operate the endoscope body 100, and inserts the insertion part 104 into the body of a subject to observe the body. The insertion part 104 is constituted of a flexible part 112 (flexible part), a bending part 114 (bending part), and a d

example 1

[0127]

[0128]FIG. 18 is a flowchart illustrating processing of the coordinate generation and storage in Embodiment 1. In Example 1, an actually measured point (first point) and a point (second point) generated by interpolating the actually measured point are stored as coordinates of points indicating a distorted circular marker. Actual measurement, transformation (each processing in the flowchart of FIG. 18), and the like of the coordinates can be performed by the processor 200 (the CPU 210, the image processing unit 204), and the generated coordinates are stored in the memory 212 (storage unit).

[0129]First, the measurement auxiliary light is radiated at the imaging distance set in the distance range (refer to the range R1 of FIG. 9) in which measurement by a distorted circular marker is effective with respect to the actual size to be a processing target (although the actual size is described below as 5 mm in diameter, the actual size may have different values in accordance with measure

example 2

[0133]

[0134]Next, Example 2 of the coordinate generation and storage of the points indicating the distorted circular marker will be described. In Example 2, the coordinates of the circular marker are calculated in the region transformed to the square lattice by projective transformation, the calculated coordinates are inversely transformed, and the coordinates of the distorted circular marker in the distorted lattice region are acquired. Processing, such as generation, transformation (respective kinds of processing in the flowchart of FIG. 21), and the like of the coordinates can be performed by the processor 200 (the CPU 210, the image processing unit 204), and the generated coordinates are stored in the memory 212 (storage unit).

[0135]FIG. 21 is a flowchart illustrating the processing of the coordinate generation and storage in Example 2. First, similarly to Step S100 of Example 1, the measurement auxiliary light is radiated, and a square lattice-like chart is captured (Step S200). I

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention aims at providing a measurement support device, an endoscope system, and a processor for an endoscope system capable of displaying an accurate indicator with a simple configuration. In a measurement support device related to one aspect of the invention, the coordinates of a spot, and coordinates of points indicating an actual size of a measurement target in a subject and indicating a circular marker distorted in accordance with distortion aberration of an imaging optical system are stored in association with each other in a storage unit, the coordinates of the points indicating the circular marker are acquired with reference to the storage unit on the basis of the measured coordinates of the spot, and the circular marker is displayed on the basis of the acquired coordinates. Thus, the distance measurement is unnecessary, the configuration is simple, and the processing load is low. Additionally, since the circular marker is displayed in the vicinity of the spot (for example, centering on a spot position), there is little deviation between the spot position and a marker position, the circular marker is accurate as an indicator. Additionally, since the indicator is not widely displayed, there is little processing load.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products