Touchless interaction using audio components

Active Publication Date: 2021-12-30
ELLIPTIC LAB
View PDF1 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0149]essentially simultaneously to initiating the decrease in the amount of said ultrasonic signal, initiating an increase in the amount of said second ultrasonic signal in the combined signal, said amount of said second ultrasonic signal being increased from an essentially zero value to the predetermined second value over a predetermined replace time-period, thereby at least substantially reducing the occurrence of pop noise in the acoustic signal due to the ultrasonic signal being replaced by the second ultrasonic signal.
[0150]The applicant has realized that such an overlap in the ramping down of the ultrasonic signal and ramping up said second ultrasonic signal can reduce the delay in starting the processing of the second ultrasonic signal. It can be beneficial, for example, in most ultrasonic touchless detectio

Problems solved by technology

In other words, a typical user should not be able to perceive a difference between audio quality with and without the ultrasonic signals being transmitted and/or received through said audio components.
One of the problems that may arise in audio components is pop noise.
Such specific hardware capabilities may sometimes be absent or unsuitable for preventing the occurrence of pop noise due to ultrasonic signal being, started, stopped, or even mixed or combined with an audio signal Furthermore, changing the gain or level of the ultrasonic signal may also result in an occurrence of pop noise,
Moreover, in certain cases, the processing components such as an amplifier and/or a codec may not have a knowledge of the specific signal parts because these processing components typically handle a composite signal, i.e., a combination of signals consisting of an audio signal part and an ultrasonic signal part.
Thus, a change in one or more specific signal parts may not be visible for the processing component, and may thus result in pop noise.
It will be understood that larger enable time-per

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0277]FIG. 1 shows an example of the electronic device 100. The electronic device 100 is shown as a mobile phone or a smartphone comprising a screen 101 for touch-based interaction with the phone 100. The phone 100 comprises an earpiece speaker 102 that can also be used as an ultrasonic transmitter, and a microphone 103 that can also be used as an ultrasonic receiver. The usual function of the earpiece speaker 102 is to generate an audible acoustic signal. The audible acoustic signal can for example, be an audio file played by the user of the phone 100, a voice of the caller to the phone 100, or even a ringtone. When the speaker 102 is used for ultrasonic touchless interaction, the speaker 102 is used to generate an acoustic signal that comprises an ultrasonic component or ultrasound, The acoustic signal in that case may or may not comprise an audio component. It will depend upon the state or use case of the phone 100, for example, whether an audio file is played through the speaker 10

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present teachings relate to an electronic device comprising: a first module for generating an audio signal; a second module for generating an ultrasonic signal; a mixer for generating a combined signal; a transmitter for outputting an acoustic signal dependent upon the combined signal; and, a processing means for controlling the ultrasonic signal; wherein, in response to receiving a first instruction signal for initiating the ultrasonic signal, the processing means is configured to increase the amount of the ultrasonic signal in the combined signal from an essentially zero value to a predetermined value over a predetermined enable time-period. The present teachings also relate to an electronic device configured to decrease the amount of the ultrasonic signal in the combined signal from an essentially zero value to a predetermined value over a predetermined disable time-period, and to an electronic device configured to remove the audio signal from the combined signal whilst preventing pop-noise, and to an electronic device capable of replacing the ultrasonic signal whilst minimizing the processing time. The present teachings further relate to a method for reducing the occurrence of pop noise in an acoustic signal associated with: initiating the ultrasonic signal in the combined signal, terminating the ultrasonic signal in the combined signal, terminating the audio signal in the combined signal, and replacing the ultrasonic signal in the combined signal. The present teachings also relate to a computer software product for implementing any of the method steps disclosed herein, and to a computer storage medium storing the computer software herein disclosed.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner ELLIPTIC LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products