Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2 results about "Frequency compensation" patented technology

In electronics engineering, frequency compensation is a technique used in amplifiers, and especially in amplifiers employing negative feedback. It usually has two primary goals: To avoid the unintentional creation of positive feedback, which will cause the amplifier to oscillate, and to control overshoot and ringing in the amplifier's step response. It is also used extensively to improve the bandwidth of single pole systems.

Method and Apparatus for Channel Estimation to Electro-Magnetic Wave Multi Path Between Sender and Receiver by Using Chirp Signal

InactiveUS20080165833A1Transmission control/equalisingFrequency-division multiplexFrequency compensationMechanical engineering
Disclosed is a method and an apparatus for channel estimation regarding electromagnetic wave multi-path characteristics between a sender and a receiver by using a chirp signal. The method includes the steps of (a) multiplying a received composite signal by a narrowband chirp-shift-keying signal or narrowband multiple center-frequency-chirp signal generated by the receiver itself and outputting a sum of individual frequency components resulting from difference in distance of multiple paths for up-chirp and down-chirp signal portions of a chirp-shift-keying signal, respectively, the received composite signal being formed by generating narrowband chirp-shift-keying signals or narrowband multiple center-frequency-chirp signals by the sender, sending the signals by a transmission antenna, receiving the signals by a reception antenna of the receiver via a multi-path channel, superimposing the signals, and adding the signals; (b) multiplying outputs of the up-chirp and down-chirp signal portions of the sum of individual frequency components and calculating a tolerance frequency output; (c) compensating for a frequency tolerance of the sum of individual frequency components by using the tolerance frequency output and generating a frequency compensation output; (d) compensating for discontinuity of chirp-shift-keying signals resulting from use of the narrowband chirp-shift-keying signals or the narrowband multiple center-frequency-chirp signals regarding the frequency compensation output and generating a discontinuity compensation output having no discontinuity; (e) decomposing the discontinuity compensation output into individual multi-path signals by using a frequency analysis method; and (f) extracting an attenuation component and a time delay component caused by the multi-path channel from the individual multi-path signals by using a size of frequency components of each frequency.
Owner:ORTHOTRON CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products