Crystalline forms and process for preparing spiro-hydantoin compounds

Active Publication Date: 2006-04-06
BRISTOL MYERS SQUIBB CO
View PDF6 Cites 23 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patented chemicals can be used for treating various conditions such as autoimmunity or inflammation caused by bacterial or viral infections. These compounds have been found effective against these types of illnesses.

Problems solved by technology

This patent describes different ways to make small molecular weight compounds called lignocytids, including those used as drugs for treatment purposes like autoimmunity. These compounds can be produced through methods similar to traditional methods but without the limitations mentioned above.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Crystalline forms and process for preparing spiro-hydantoin compounds
  • Crystalline forms and process for preparing spiro-hydantoin compounds
  • Crystalline forms and process for preparing spiro-hydantoin compounds

Examples

Experimental program
Comparison scheme
Effect test

examples

[0227] The following examples illustrate embodiments of the inventive process, and are not intended to limit the scope of the claims. For ease of reference, the following abbreviations are used herein:

ABBREVIATIONS

[0228] DMSO=dimethyl sulfoxide [0229] DTTA=(+)-Di-p-toluoyl-D-tartaric acid [0230] EtOH=ethanol [0231] HCl=hydrochloric acid [0232] HPLC=high performance liquid chromatography [0233] kg=kilogram [0234] L=liter [0235] M=molar [0236] MTBE=methyl tertiary butyl ether [0237] MeOH=methanol [0238] mol=mole [0239] mp=melting point [0240] NMR=nuclear magnetic resonance [0241] TBME=t-butyl methyl ether [0242] THF=tetrahydrofuran

preparation 1

3-(3,5-dichlorophenyl)-1-methylimidazolidine-2,4-dione

[0243]

[0244] Triethylamine (0.78 kg, 7.75 mol) was added in 15-30 minutes with stirring to a thin suspension of sarcosine ethylene hydrochloride (1.00 kg, 6.51 mol) in dichloromethane (6.00 L). After stirring at room temperature for 1.5-2.0 hours, the mixture was filtered to remove the resulting triethylamine hydrochloride salt. The salt cake was washed with dichloromethane (2.00 L). The filtrate was cooled to 0-5° C.

[0245] A solution of 3,5-dichlorophenyl isocyanate (1.47 kg, 7.81 mol) in dichloromethane was prepared at 20-25° C. The solution was added to the above cooled filtrate slowly in 30-60 minutes. The temperature was maintained below 10° C. during the addition. After the addition, the mixture was stirred at 20-25° C. for 12-14 hours. The completeness of the reaction was followed by HPLC. Upon reaction completion, TBME (16.00 L) was added in one portion. The resulting suspension was stirred at 20-25° C. for 2-3 hours and w

preparation 2

(E)-4-((1-(3,5-dichlorophenyl)-3-methyl-2,5-dioxoimidazolidin-4-ylidene)methyl)benzonitrile

[0246]

[0247] A mixture of 3-(3,5-dichlorophenyl)-1-methylimidazolidine-2,4-dione (1.00 kg, 3.86 mol), 4-cyanobenzaldehyde (0.70 kg, 5.79 mol) and pyrrolidone (0.27 kg, 3.86 mmol) was refluxed in EtOH (13.00 L) for 20-24 hours at a temperature of 78° C. The completeness of the reaction was followed by HPLC. Upon reaction completion, the suspension was cooled to 65° C. and THF (4.33 L) was added in 5-10 minutes. The suspension was cooled to 20-25° C. in 3-4 hours and was then filtered. The filter cake was washed with EtOH (4×2.00 L) and dried at maximum 40° C. to a constant weight. (E)-4-((1-(3,5-dichlorophenyl)-3-methyl-2,5-dioxoimidazolidin-4-ylidene)methyl)benzonitrile (1.24 kg, 86%) was obtained as a fluffy, yellowish crystalline solid. mp=239-241° C. 1H NMR (DMSO-d6): 8.07 (2H, d, J=8.3 Hz), 7.86 (2H, d, J=8.4 Hz), 7.72 (1H, m), 7.59 (2H, m), 6.72 (1H, s), 3.35 (3H, s). 13C NMR (DMSO-d6): 14

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Login to view more

Abstract

A process is provided for preparing spiro-hydantoin compounds of the formula II
wherein Z is N or CR4b; K and L are independently O or S; Ar is an optionally substituted aryl or heteroaryl; A2 is a linker, G′ is a linker; Q is a linker; and R2, R4a, R4c, and Rh are defined in the specification. The process optionally includes the enantiomeric separation of intermediates to allow preparation of enantiomers of the spiro-hydantoin compounds of formula II. Substituted spiro-hydantoin compounds may be prepared from the spiro-hydantoin compounds of formula II. The spiro-hydantoin compound of formula II and the substituted spiro-hydantoin compounds are useful in the treatment of immune or inflammatory diseases. Also, provided are products made by the instant inventive process and crystalline forms (prepared by any process) of the substituted spiro-hydantoin compound, 5-[(5S, 9R)-9-(4-Cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]non-7-ylmethyl]-thiophene-3-carboxylic acid, including solvates and salts thereof, as well as methods of use thereof. Crystalline forms of certain intermediates are provided.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner BRISTOL MYERS SQUIBB CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products