Heater plate with embedded hyper-conductive thermal diffusion layer for increased temperature rating and uniformity

Active Publication Date: 2011-06-09
THERM X OF CALIFORNIA INC
View PDF11 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004]Integrating a thermally annealed pyrolytic graphite (TPG) layer, between the heater and the critical surface of the plate dramatically improves the thermal uniformity. TPG is sometimes referred to as “hyper conductive” due to its having a thermal conductivity about four times that of copper

Problems solved by technology

Achieving the most uniform temperature on the surface of a heater can be limited due to the thermal conductivity of the materials of construction.
Often, material options are limited by fac

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0009]With reference to FIG. 1, a heater 11 has a critical heating surface on a thermally conductive upper plate 13. Two electrodes 19 and 21 for in internal heater coil are seen to emerge from a side of the heater 11, along with a ground electrode 20 for the plate 13.

[0010]As seen in FIG. 2, the heater 11 includes upper and lower plates 13 and 15, together with and a thermal pyrolytic graphite (TPG) diffusion layer 17 and an electrically isolated heating element 23 located between the two plates 13 and 15. An interface material, not shown, fills voids between the various component parts 13, 15, 17 and 21, and bonds the plates 13 and 15 together.

[0011]The upper and lower plates 13 and 15 may be made of metal. However, the plate material need not have especially high thermal conductivity in the plane of the plates because of the presence of the TPG diffusion layer 17 that serves to uniformly spread the heat from the heating element across the critical surface of the upper plate 13. Thus

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A heater plate is constructed with an embedded thermal diffusion layer of pyrolytic graphite to provide increased temperature uniformity in a critical heating surface. The heater has first and second metal plates with a heater element contained within the first plate and a core of the pyrolytic graphite diffusion layer sandwiched between the heater element and the second metal plate. The diffusion layer may be sputter metal coated to improve bonding of the layer to the plates.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner THERM X OF CALIFORNIA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products