Hormone receptor modulators for treating metabolic mutagenic and fibrotic conditions and disorders

a hormone receptor and modulator technology, applied in the field of nuclear hormone receptor modulators, farnesoid x receptor (fxr), can solve the problems of toxicity of fxr activators

Pending Publication Date: 2021-12-09
ARDELYX
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention relates to new drugs called FXR activation factors (FXRs) which can be used to treat various conditions related to these receptors. These therapies include hepatitis B virus-related liver damage caused by alcohol consumption or other substances like tuberculosis, necrosis, inflammation, and certain types of cancer.

Problems solved by technology

This patent describes different types of FXR regulatory factors, specifically those involved in controlling gene expressions during specific biological processes. These include but may also affect other systems such as neurotransmitter release, insulin secretion, and mitochondria-mediated oxidant stress response. Therefore, it provides new compounds that could potentially address these challenges without causing harmful side effects.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Hormone receptor modulators for treating metabolic mutagenic and fibrotic conditions and disorders
  • Hormone receptor modulators for treating metabolic mutagenic and fibrotic conditions and disorders
  • Hormone receptor modulators for treating metabolic mutagenic and fibrotic conditions and disorders

Examples

Experimental program
Comparison scheme
Effect test

example 1

ate. Benzyl (1S,4S,5R)-5-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-1) and (1S,4R,6S)-Benzyl 6-hydroxy-2-aza-bicyclo[2.2.1]heptane-2-carboxylate (C-2)

[0369]

[0370]Step 1. Benzyl (1S,4R)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate (C-1b)

[0371]To a 250-mL 3-necked round-bottom flask purged and maintained under an inert atmosphere of nitrogen was added a solution of LiAlH4 (2.15 g, 56.65 mmol, 1.25 equiv.) in tetrahydrofuran (80 mL). A solution of (1S,4R)-2-azabicyclo[2.2.1]hept-5-en-3-one C-1a (5 g, 45.82 mmol, 1.0 equiv.) in tetrahydrofuran (45 mL) was added dropwise with stirring at 0° C. The mixture was stirred at 23° C. for 3 h, and then continued at 60° C. for 24 h. After cooling to room temperature, water (5 mL) was added. The resulting mixture was diluted with 250 mL of tetrahydrofuran, and the solids were removed by filtration. The filtrate was cooled to 0° C. and TEA was added (9.1 g, 89.93 mmol, 2.0 equiv.) dropwise followed by the dropwise addition of benzyl chloroform

example 2

ate. Benzyl (1R,4R,5S)-5-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-4) and Benzyl (1R,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-5)

[0376]

[0377]Step 1. Benzyl (1S,4S,5S)-5-[(4-nitrophenyl)carbonyloxy]-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-3a)

[0378]To a 250-mL round-bottom flask was added a solution of benzyl (1S,4S,5R)-5-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate C-1 (1.03 g, 4.17 mmol, 1.0 equiv.) in tetrahydrofuran (50 mL) and 4-nitrobenzoic acid (1.05 g, 6.28 mmol, 1.50 equiv.). The reaction mixture was cooled to 0° C. and PPh3 was added (1.64 g, 6.25 mmol, 1.50 equiv) in several batches followed by dropwise addition of DIAD (1.26 g, 6.23 mmol, 1.50 equiv). The resulting mixture was stirred at room temperature overnight and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography eluting with ethyl acetate / petroleum ether (25:75) to give 1.6 g (97%) of benzyl (1S,4S,5S)-5-[(4-nitrophenyl)carbonylox

example 3

ates. Benzyl (1R,4R,5S)-5-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-4) and Benzyl (1R,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]heptane-2-carboxylate (C-5)

[0381]

[0382]Step 1. Benzyl (1R,4S)-2-azabicyclo[2.2.1]hept-5-ene-2-carboxylate (C-2)

[0383]A solution of (1R,4S)-2-azabicyclo[2.2.1]hept-5-en-3-one C-4a (5.0 g, 45.8 mmol) in anhydrous THF (50 mL) was added slowly to a solution of LAH (28.7 mL, 57.3 mmol, 2M solution in THF) in anhydrous THF (50 mL) under a nitrogen atmosphere at 0° C. The resulting mixture was then stirred at room temperature for 3 h and then heated at 60° C. for 24 h. The mixture was cooled to 0° C. and H2O (5.0 mL) was added carefully to the mixture. The resulting white suspension was filtered through a Celite pad and the pad was washed with anhydrous THF (250.0 mL). The clear filtrate was cooled to 0° C. and then treated with trimethylamine (12.8 mL, 91.6 mmol) and CbzCl (10.3 mL, 68.7 mmol). The reaction mixture was slowly warmed to room temperature and stirr

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to activators of FXR useful in the treatment of autoimmune disorders, liver disease, intestinal disease, kidney disease, cancer, and other diseases in which FXR plays a role, having the Formula (I): wherein L1, A, X1, X2, Y1, Y2, Y3, Y4, R1, R2, and R3 are described herein.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner ARDELYX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products