Linear burst mode synchronizer for passive optical networks

a passive optical network and synchronizer technology, applied in the field of passive optical networks, can solve the problems of data loss, burst loss, and inapplicability of conventional clock recovery and resynchronization feedback mechanisms, and achieve the effects of improving synchronized jitter performance, additional timing margin, and longer fiber length

Active Publication Date: 2008-01-24
REALTEK SINGAPORE PTE LTD
View PDF10 Cites 20 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention provides an improved receiving circuit for optical fibers used in communication systems. This improvement allows for more precise timing between signals transmitted by different devices on the same cable.

Problems solved by technology

The technical problem addressed in this patent text relates to improving the efficiency and reliability of PON systems. Current methods involve sending a request-to-transmit (RTS) message along with the data to the receiving end, waiting for acknowledgment signals, and performing error correction if needed. These methods lead to delays and consume significant resources. Therefore, new resynchronizers are proposed to overcome these issues.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Linear burst mode synchronizer for passive optical networks
  • Linear burst mode synchronizer for passive optical networks
  • Linear burst mode synchronizer for passive optical networks

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0044]Referring now to FIG. 1, there is shown a system block diagram of a PON system 10 in which the present invention might find application.

[0045]The system 10 comprises a PON host 20, a plurality of substantially identical (for purposes of the present discussion) PON subscribers 30, of which an exemplary subscriber is shown in detail, a PON host optical module 40, at least one optical splitter 50, a plurality of fibers 60, 61 and a plurality of PON subscriber optical modules 70.

[0046]The host 20 is connected to the host optical module 40 by a pair of serial connections 25 and 26. Serial connection 26 conveys serial data from the host 20 to the host optical module 40 (downstream data) while serial connection 25 conveys serial data from the host optical module 40 to the host 20 (uplink data). As mandated by the PON standard specifications, the downstream data is transmitted in continuous fashion while the uplink data is received in bursts.

[0047]As shown in FIG. 1, the host 20 may acce

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention discloses a host receiver synchronizer for passive optical networks, and in particular a burst clock data recovery circuit in a host receiver in a bursty asynchronous communication system having a non-data preamble of less than 250 ns, for recovering a clock signal from a subscriber data burst. The circuit comprises: an adjustable oscillator for generating an output clock signal in response to a signal at an input thereof; a first comparator for comparing a frequency and phase of the output clock signal to that of a reference signal and feeding back a first feedback signal to the oscillator input; and a second comparator for comparing the frequency and phase of the output clock signal to that of the data burst and feeding back a second feedback signal to the oscillator input once the output clock signal is locked in frequency with the reference signal. The output clock signal is locked in frequency and phase to the data burst before receipt of the last bit of the preamble. The present invention is advantageous in that the receiver circuit improves synchronized jitter performance over the prior art solutions so that additional timing margin is provided, thereby allowing longer fiber lengths to be supported.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner REALTEK SINGAPORE PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products