Methods for producing substantially homogeneous hybrid or complex n-glycans in methylotrophic yeasts

Inactive Publication Date: 2011-04-21
RES CORP TECH INC +1
View PDF1 Cites 9 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]In one aspect, the present invention provides a highly efficient and effective engineering method to convert methylotrophic yeast's heterogeneous high mannose-type N-glycosylation to mammalian-type N-glycosylation (hybrid and complex-type structures). The present method involves disruption of an endogenous glycosyltransferase gene (OCH1) and step-wise introduction of appropriately localized heterologous glycosidase and glycosyltransferase activities, wherein each engineering step is comprised of tran

Problems solved by technology

Yeasts are unfavorable in this respect, because they modify glycoproteins with non-human high mannose-type N-glycans.
These structures dras

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0092]Reagents used in Example 2 included antibiotics, such as Blasticidin S (Fluka), Zeocin (Invitrogen), Nourseothricin (Werner BioAgents), Geneticin G418 (Invitrogen), and Hygromycin B (Calbiochem); Bacto Agar (Difco), Bacto peptone (Difco), Bacto yeast extract (Difco), Biotin (Sigma), BMGY (see REAGENT SETUP), BMMY (see REAGENT SETUP), Citric acid (Calbiochem), Deionized water (dd-water), DTT (Sigma), Glucose monohydrate (Merck), Glycerol (Biosolve), HEPES (Sigma), Methanol (Biosolve), NaCl (Merck); restriction enzymes, such as AvrII (New England Biolabs), BsiWI (New England Biolabs), BstBI (New England Biolabs), PmeI (New England Biolabs), SapI (New England Biolabs), Sorbitol (Sigma), YNB (yeast nitrogen base) without amino acids (Difco) and YPD media and plates (see REAGENT SETUP).

TABLE 2AntibioticsAntibioticFinal concentration (μg / ml)Blasticidin500Zeocin100Nourseothricin100G418350Hygromycin B150

[0093]Equipment

[0094]Equipments used in Example 2 included 24-well culture plates (

Example

EXAMPLE 3

Results

[0244]The workflow presented in FIGS. 1a and 1d allows engineering of the N-glycosylation pathway of any wild type P. pastoris strain. The construction of a strain that modifies its glycoproteins with Gal2GlcNAc2Man3GlcNAc2 N-glycans requires the consecutive integration of five GlycoSwitch vectors into the Pichia genome. Each of these plasmids contains a different dominant antibiotic resistance marker for selection. As a consequence, it is critical that the starting strain is still sensitive to all five antibiotics: blasticidin, zeocin, hygromycin, geneticin and nourseothricin. Some other combinations of engineering enzyme—selection marker are available (see Table 4), but not all. One can start from the GS115 wild type strain because its histidine auxotrophy provides an additional selection maker that allows selection for integration of a pPIC9-derived vector that drives the production of a protein of interest.

[0245]This Example describes results of three mouse protein

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Concentrationaaaaaaaaaa
Concentrationaaaaaaaaaa
Login to view more

Abstract

The present invention provides methods for effectively and efficiently converting methylotrophic yeast's heterogeneous high mannose-type N-glycosylation to mammalian-type N-glycosylation by disruption of an endogenous glycosyltransferase gene (OCH1) and step-wise introduction of heterologous glycosidase and glycosyltransferase activities. Each engineering step includes a number of stages: transformation with an appropriate vector, cultivation of a number of transformants, performance of sugar analysis and heterologous protein expression analysis, and selection of a desirable clone. The selected clone is then subjected to the next engineering step.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner RES CORP TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products