High-strength steel sheet having excellent processability and method for manufacturing same

Active Publication Date: 2020-11-05
POSCO
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0018]According to an exemplary embodiment, a steel sheet having improved workability may be provided even in the case of having high strength, by the optimization of an alloy composition and manufacturing conditions.
[0019]As described above, since the steel sheet having improved workability according to an exemplary embodiment may prevent processing defects such as cracks or wrinkles during press forming, thereby an effect of appropriately applying the steel sheet to components for structures, and the like, requiring processing into a complicated shape.

Problems solved by technology

In general, as the strength of a steel sheet increases, elongation decreases, and as a result, there is a problem in that molding workability deteriorates.
Thereamong, solid solution strengthening and strengthening by grain refinement are difficult in manufacturing high strength steel having a tensile strength of 490 MPa or higher.
This has the advantage that the strength may be easily improved compared to the low manufacturing cost, while the recrystallization temperature is rapidly increased by the fine precipitates, and there is a disadvantage that high temperature annealing must be performed to ensure sufficient recrystallization and ductility.
In addition, since the steel is strengthened by depositing carbide or nitride on the ferrite matrix, there is a limit to obtaining a high strength steel having a tensile strength of 600 MPa or more.
However, as the strength gradually increases, cracks or wrinkles are generated in the process of press forming to manufacture a steel sheet as a component, and thus, a limit in manufacturing a complex component is reached.
However, to precipitate fine Cu particles, Cu must be added at a high content of 2 to 5% by weight, and in this case, there is a concern that red brittleness by Cu may occur, and manufacturing costs may be excessively increased.
In this case, although the hole expandability of the steel sheet is good, there is a limit in increasing the tensile strength, and the yield strength is high and the ductility is low, so there may be a problem of cracks or the like during press forming.
However, in this case, the content of carbon (C) is as high as 0.2% or more, and there is a problem in that weldability is inferior and a dent defect in the furnace due to the addition of a large amount of Si may occur.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • High-strength steel sheet having excellent processability and method for manufacturing same
  • High-strength steel sheet having excellent processability and method for manufacturing same
  • High-strength steel sheet having excellent processability and method for manufacturing same

Examples

Experimental program
Comparison scheme
Effect test

Example

Example

[0128]After preparing a steel slab having the alloy composition illustrated in Table 1 below, the steel slab was heated to a temperature in a range of 1050 to 1250° C., and then hot rolled, cooled, and coiled under the conditions illustrated in Table 2 to prepare a hot rolled steel sheet.

[0129]Thereafter, each hot rolled steel sheet was pickled, and then cold rolled at a cold rolling reduction ratio of 40 to 70% to prepare a cold rolled steel sheet, and then subjected to continuous annealing under the conditions illustrated in Table 2 below, followed by stepwise cooling (2nd and 3rd), and then, was maintained in the range of 70 to 100 seconds at the third cooling end temperature. In this case, the third cooling was performed in a hydrogen cooling facility.

[0130]Thereafter, zinc plating was performed in a hot-dip galvanizing bath (0.1 to 0.3% Al-residual Zn) at 430 to 490° C., followed by final cooling and followed by temper rolling to 0.2%, to prepare a hot-dip galvanized steel

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to view more

Abstract

Provided is a high-strength steel sheet having a tensile strength of 780 MPa or higher. The high-strength steel sheet has a low yield ratio and excellent ductility (El) and strain hardening exponent (n) and thus has enhanced processability.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner POSCO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products