Pressure control valve for refrigeration cycle

Inactive Publication Date: 2007-05-17
DENSO CORP
View PDF10 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013] The present invention provides a pressure control valve of a supercritical refrigeration cycle set forth below as means for achieving the above object. According to a first aspect of the invention, there is provided a pressure control valve (100) arranged in a refrigerant flow path from a gas cooler (2) to an evaporator (4) of a vapor compression type supercritical refrigeration cycle and controlling a pressure of an outlet side of the gas cooler (2) in accordance with a refrigerant temperature of an outlet side of the gas cooler (2), wherein refrigerant is sealed in a sealed space (19) above a diaphragm (32), pressure of a refrigerant in the refrigeration cycle acts on the diaphragm (32), a valve (31) opens and closes in accordance wi

Problems solved by technology

However, if applying these types of valve systems to a CO2 refrigerant, the following problems would arise.
That is, the contr

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0038] In the expansion valve 100 for a refrigeration cycle of the first embodiment configured in this way, the valve closing force of the valve body 31 is designed to be obtained by the inside pressure inside the sealed space 91 and the adjustment spring 36, while the valve opening force of the valve body 31 is obtained by the refrigerant pressure at the outlet side of the internal heat exchanger 8. The expansion valve 100 is opened and closed by the balance of the two.

[0039] On the other hand, the feeler bulb 92 is fixed abutting against the piping 81 at the outlet side of the gas cooler 2 by a band 82. The sealed refrigerant inside the feeler bulb 92 is heated by the piping temperature (that is, the refrigerant temperature of the gas cooler outlet) and that temperature is detected. Further, the outer circumference of the feeler bulb 92 and the outside wall 35 surrounding the sealed space 91 at the top of the diaphragm 32 are covered by the heat insulating packing 98, 94. The inside

Example

[0049]FIG. 3 shows a second embodiment. The present embodiment is a so-called box type expansion valve. In the box type, instead of a feeler bulb, high pressure refrigerant is introduced below the diaphragm to detect the refrigerant temperature. More specifically, the body 33 has a first opening 33d to which a temperature sensing part having substantially half of the same function as the feeler bulb of the first embodiment is attached. This temperature sensing part is mainly comprised of a diaphragm 32, a lid 35, and a lower support member 34 and is formed inside it with a sealed space 91. That is, the lid 35 is formed at its center part with a recess 35a for forming the sealed space 91. The diaphragm 32 is fastened at its rim by being clamped between the lid 35 and the lower support member 34, whereby a temperature sensing part is formed. The diaphragm 32 is a thin film comprised of a stainless steel material and deforms and displaces in accordance with the difference in pressure insi

Example

[0057]FIG. 5 shows a third embodiment. The third embodiment is a box type detecting the refrigerant temperature at the valve inlet. When combining this type with the cycle of FIG. 1, the refrigerant temperature after the internal heat exchanger is detected for control, while when combining this with the cycle of FIG. 4, the refrigerant temperature of the gas cooler outlet is detected for control. The actions and effects are similar to those of the second embodiment.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A pressure control valve of a supercritical refrigeration cycle small in size and resistant to the effects of the outside air temperature, that is, a pressure control valve of a vapor compression type supercritical refrigeration cycle wherein a refrigerant is sealed in a sealed space at the top of the diaphragm, pressure of the refrigerant in the refrigeration cycle acts on the valve connected to the diaphragm, the valve opens and closes in accordance with the balance between the refrigerant pressure in the sealed space and the refrigerant in the refrigeration cycle, the sealed space is communicated with locations substantially having temperature sensing functions detecting the refrigerant temperature, and the volume of the locations substantially having the temperature sensing functions is at least 50% of the total volume of communicated with the sealed space.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner DENSO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products