Core-shell structured silicate luminescent material and preparation method therefor

Active Publication Date: 2015-03-26
OCEANS KING LIGHTING SCI&TECH CO LTD +1
View PDF0 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0022]In one embodiment, the temperature of calcined in air or under a reducing atmosphere is 900° C. to 1600° C., and the time of calcined is 2 h to 10 h.
[0023]In one embodiment, said reducing atmosphere is a mixed atmosphere comprised of 95 vol % of N2 and 5 vol % of H

Problems solved by technology

For the sulfide-based phosphor powder, which the phosphor powder gets damp very readily, and that the matrix is generally unstable in a long-term electron beam bombardment, and thus got decomposed very readily to generate gases, such as H2S, wh

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

Example 1

Preparation of NaY0.99SiO4:0.01Tb3+@SiO2 by Sol-Gel Method

[0054]1) Preparation of SiO2 microsphere: 10 mL of water was placed in a beaker, followed by sequentially added therein 15 mL of anhydrous ethanol and 1 mL of ammonia water, and subjected to magnetic stirring to achieve homogenous, and dropwisely added therein 0.5 mL of tetraethylorthosilicate (TEOS) under magnetic stirring; after addition, reaction was stirred for 6 h to give a suspension of SiO2 microsphere containing impurities. The suspension of SiO2 microsphere containing impurities was then subjected to centrifugal separation spinning at 12000 rpm, rinsed with deionized water three times to remove surplus ammonia water and residual TEOS to give the SiO2 microsphere as precipitate. The thus prepared SiO2 microsphere was subjected to ultrasonic dispersion and redispersed in 10 mL of anhydrous ethanol to give a suspension of SiO2 microsphere.

[0055]2) Preparation of NaY0.99SiO4:0.01Tb3+@SiO2 core-shell luminescent mat

Example

Example 2

Preparation of LiLa0.7SiO4:0.3Ce3+@SiO2 by Sol-Gel Method

[0056]1) Preparation of SiO2 microsphere: 20 mL of water was placed in a beaker, followed by sequentially added therein 50 mL of anhydrous ethanol and 7 mL of ammonia water, and subjected to magnetic stirring to achieve homogenous, and dropwisely added therein 3 mL of tetraethylorthosilicate (TEOS) under magnetic stirring; after addition, reaction was stirred for 2 h to give a suspension of SiO2 microsphere containing impurities. The suspension of SiO2 microsphere containing impurities was then subjected to centrifugal separation spinning at 12000 rpm, rinsed with deionized water three times to remove surplus ammonia water and residual TEOS to give the SiO2 microsphere as precipitate. The thus prepared SiO2 microsphere was subjected to ultrasonic dispersion and redispersed in 20 mL of anhydrous ethanol to give a suspension of SiO2 microsphere.

[0057]2) Preparation of LiLa0.7SiO4:0.3Ce3+@SiO2 core-shell luminescent materia

Example

Example 3

Preparation of KLu0.4SiO4:0.5Gd3+, 0.05Eu3+, 0.05Tm3+@SiO2 by Sol-Gel Method

[0058]1) Preparation of SiO2 microsphere: 15 mL of water was placed in a beaker, followed by sequentially added therein 20 mL of anhydrous ethanol and 3 mL of ammonia water, and subjected to magnetic stirring to achieve homogenous, and dropwisely added therein 1.5 mL of tetraethylorthosilicate (TEOS) under magnetic stirring; after addition, reaction was stirred for 3 h to give a suspension of SiO2 microsphere containing impurities. The suspension of SiO2 microsphere containing impurities was then subjected to centrifugal separation spinning at 12000 rpm, rinsed with deionized water three times to remove surplus ammonia water and residual TEOS to give the SiO2 microsphere as precipitate. The thus prepared SiO2 microsphere was subjected to ultrasonic dispersion and redispersed in 15 mL of anhydrous ethanol to give a suspension of SiO2 microsphere.

[0059]2) Preparation of KLu0.4SiO4:0.5Gd3+, 0.05Eu3+, 0.05

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A core-shell structured silicate luminescent material and a preparation method thereof. The molecular formula of the luminescent material is: MLn1-xSiO4:xRE@SiO2; where @ represents a coating, where M is one or two elements among Li, Na, and K, where Ln is one or two elements among Y, Sc, Lu and La, where the value of x is 0<x≰0.6; and where RE is one, two, or three elements among Tb, Gd, Sm, Eu, Dy, Ce and Tm. The compositions of the luminescent material are all chemicals of increased chemical stability, and, when subjected to electron beam bombardment for an extended period, provide a stable matrix and do not decompose easily.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner OCEANS KING LIGHTING SCI&TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products