Negative-acting photolithographic printing plate with improved pre-burn performance

a negative-acting, photolithographic printing technology, applied in the direction of lithography, photosensitive materials, instruments, etc., can solve the problems of insufficient pre-burn performance of negative working printing form precursors, inability to achieve one or more desirable features of the prior art, and the natural sensitivity of diazonium salt compositions to near infra-red or infra-red laser irradiation. to achieve the effect of increasing the plate performan

Inactive Publication Date: 2008-07-17
SOUTHERN LITHOPINTE
View PDF23 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes how adding certain chemicals can improve the performance of negative- working lithographic printing plates used in liquid crystal displays. These chemicals include a specific type called Acetone Black Liquid Resorcinol Arylate (ARL) that helps release excessive developer during printing. By doing this, these plates have better image quality and longer lifespan compared to other types of plates.

Problems solved by technology

The technical problem addressed in this patent is improving the performance of printing plates made from thermally reversible recording media, specifically relating to the issue of developing images on offset printing plates. Existing solutions involve adding layers of metal foils to absorb the energy needed for printing. Additionally, there may be limitations in achieving optimal plate coatings through various techniques such as immersion and drying.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Negative-acting photolithographic printing plate with improved pre-burn performance
  • Negative-acting photolithographic printing plate with improved pre-burn performance
  • Negative-acting photolithographic printing plate with improved pre-burn performance

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0069]A solution in Dowanol™ solvent PM (Dow Chemical Wilmington, Del.) and MEK consisting of 2 g of the acetal resin 1 0.02 g of CYMEL™ 303 (American Cyanamid Co., Wayne, N.J.), 0.02 g TTT, (2,4,6-tris(trichloromethyl)-1,3,5-triazine PCAS, France), 0.0072 g malachite green (Aldrich Chemicals, Milwaukee, Wis.) and 0.003 g of 2,2-bis(hydroxymethyl)-2,3-dihydro-1H-perimidine based squarylium dye made according to U.S. Pat. No. RE 38,251 1d was coated with a No. 6 coating rod (R&D Specialties, Webster, N.Y.) onto 200 micron-thick grained and anodized aluminum printing plate base and dried in an oven at 90° C. for 3 minutes.

example 3

[0070]A solution in Dowanol™ solvent PM (Dow Chemical Wilmington, Del.) and MEK consisting of 2 g of the acetal resin 2 0.02 g of CYMEL™ 303 (American Cyanamid Co., Wayne, N.J.), 0.02 g TTT, (2,4,6-tris(trichloromethyl)-1,3,5-triazine PCAS, France), 0.0072 g malachite green (Aldrich Chemicals, Milwaukee, Wis.) and 0.003 g of 2,2-bis(hydroxymethyl)-2,3-dihydro-1H-perimidine based squarylium dye made according to U.S. Pat. No. RE 38,251 1d was coated with a No. 6 coating rod (R&D Specialties, Webster, N.Y.) onto 200 micron-thick grained and anodized aluminum printing plate base and dried in an oven at 90° C. for 3 minutes.

[0071]The plates thus prepared of comparative example 1, example 2 and example 3 were imaged on a Newsetter® 70 made by Creo, Inc. using 15 W. Plates were subsequently pre-heated at a range of temperatures and developed in 830N developer (Southern Lithoplate Inc., Youngsville, N.C.) for 30s, the exposed areas remained and the unexposed areas were washed off to leave a n

example 4

[0072]A solution in Dowanol™ solvent PM (Dow Chemical Wilmington, Del.) and MEK consisting of 2 g of the acetal resin 1 0.02 g of CYMEL 303 (American Cyanamid Co., Wayne, N.J.), 0.02 g TTT, (2,4,6-tris(trichloromethyl)-1,3,5-triazine PCAS, France), 0.0072 g crystal violet (Aldrich Chemicals, Milwaukee, Wis.). 0.003 g of 2,2-bis(hydroxymethyl)-2,3-dihydro-1H-perimidine based squarylium dye made according to U.S. Pat. No. RE 38,251 1d and 0.001 g surfactant FC430 (Minnesota Mining and Manufacturing Co), was coated with a No. 6 coating rod (R&D Specialties, Webster, N.Y.) onto 200 micron-thick grained and anodized aluminum printing plate base and dried in an oven at 90° C. for 3 minutes. The plates of comparative example 1, example 2 and example 3 were imaged on a Newsetter™ 70 made by Creo, Inc. using 15 W. Plates were subsequently pre-heated at a range of temperatures and developed in 830N developer Southern Lithoplate, Youngsville, N.C.) for 30 seconds (s), the exposed areas remained a

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A negative-acting photolithographic printing plate precursor has a unique negative-acting photosensitive composition on a surface. The photosensitive composition contains an acetal polymer, an infrared absorbing dye or pigment, a crosslinking agent for the acetal resin and a photosensitive chemical acid progenitor, and the acetal polymer has within its backbone a structure comprising a particular polymeric moiety derived from a polyvinyl alcohol backbone.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner SOUTHERN LITHOPINTE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products