Image recording apparatus and control method therefor

a technology of image recording and recording apparatus, applied in the direction of printing, etc., can solve the problems of image quality deterioration, sometimes impossible to perform proper control, and discontinuity in processing between divided areas, so as to reduce image deterioration and reduce processing speed

Active Publication Date: 2016-10-13
CANON KK
View PDF0 Cites 11 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention allows images to be printed faster by dividing them into smaller sections and performing print processing separately from other parts of the image. This results in improved quality output compared to traditional methods that divide the entire image into multiple sections.

Problems solved by technology

The technical problem addressed in this patent text relates to improving the performance of computer systems while reducing processing delays caused by the use of parallelism during printing. Specifically, current methods require a lot more memory than necessary due to the limited available space.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Image recording apparatus and control method therefor
  • Image recording apparatus and control method therefor
  • Image recording apparatus and control method therefor

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0028]FIG. 1 is a view schematically showing a printer 100 as an inkjet recording apparatus according to the first embodiment. The printer 100 according to the embodiment is a full-line type recording apparatus, and includes recording heads 101 to 104, as shown in FIG. 1. Each of the recording heads 101 to 104 includes a nozzle array of a plurality of nozzles which correspond to the width of a recoding medium 106 and discharge the same type of ink. The nozzle array has nozzles arrayed in the x-axis direction in FIG. 1 at a pitch of 1,200 dpi. The recording heads 101 to 104 are recording heads which respectively discharge black (K), cyan (C), magenta (M), and yellow (Y) inks. The recording heads 101 to 104 which discharge these different types of inks are arranged in parallel in the y-axis direction in FIG. 1. Reference numeral 401 in FIG. 1 generically denotes the recording heads 101 to 104, which will be referred to as the recording head unit 401 hereinafter.

[0029]FIG. 2 is a view sho

second embodiment

[0089]The second embodiment will be described below. The constituent elements of an apparatus according to this embodiment are the same as those in the first embodiment, and a description of them will be omitted. Differences from the first embodiment reside in processing by divided data conversion units 606 and 612 in ASICs 301b and 301c and processing by divided data correction units 607 and 613.

[0090]According to the first embodiment, if recording image data after quantization (binarization) includes ink discharge dots to be recorded by a discharge failure noise, adjacent non-ink discharge dots are changed to discharge dots. In contrast to this, the second embodiment implements this operation by head shading processing before binarization. Divided data correction units 607 and 612 perform this head shading processing.

[0091]As in the first embodiment, a recording characteristic detection unit 603 of the ASIC 301b detects the amounts of ink from the respective nozzles of the respective

third embodiment

[0109]FIGS. 11A and 11B are views showing an example of monitor control in a parallelization system according to the third embodiment of the present invention. Monitor control described below is one type of correction processing performed by divided data correction units 607 and 613 in the respective ASICs.

[0110]A preferred example of processing will be described in detail below. A recording characteristic detection unit 603 of an ASIC 301b generates dot count information by counting the number of dots to be discharged by using a dot count filter 1108 with respect to four-line (depending on the size of a dither matrix for quantization processing) recording image data after quantization stored in a RAM 212b. That is, the value of data to be driven within the filter matrix is counted every time the matrix is moved by one pixel. This dot count information is transmitted to an ASIC 301c via the communication unit 604.

[0111]A recording characteristic detection unit 609 of the ASIC 301c also

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A dividing unit generates, from input data, divided data corresponding to the first area and the second area to be printed by a recording head and partly overlapping each other. The dividing unit supplies the respective divided data to the first processing unit and the second processing unit which can concurrently perform processing. Each of the first and second processing units generates the recording image data from the divided data based on a characteristic of the recording head corresponding to a recording area assigned to one of the processing units and a partial area assigned to the other processing unit. Each of the first and second processing units then performs driving control on the recording head based on data, in generated recording image data, which corresponds to an area recorded by one of the processing units.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products