New cleaning method, apparatus and use

Active Publication Date: 2017-09-21
XEROS LTD
View PDF3 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008]The present invention derives from the finding that the above technical problems can be addressed, at least in part, by a cleaning method which utilises cleaning particles comprising a thermoplastic polyamide and a particulate inorganic filler having a density of at least 2.5 g/cm3, said cleaning particles having an average particle size of from 1 to 100 mm, wherein the cleaning particles have an average density of at least 1.65 g/cm3 and/or the particulate inorganic filler has a D50 particle size of at least 10 microns and/or a D90 particle size of at least 40 microns. Without wishing to be limited by any particular theory it is believed that cleaning particles with a higher density separate better from the cleaned substrate at the end of the cleaning procedure and that using a dense filler achieves this very effectively whilst still permitting the use of low density nylon thermoplastics which offer excellent cleaning characteristics and recyclability. Furthermore, the use of inorganic filler particles having a D50 size of at least 10 microns and a D90 size of at least 40 microns permits higher proportions of inorganic filler to be incorporated into the thermoplastic resin without affecting the particle melt rheology and final morphology so adversely that it becomes difficult or impractical to find suitable methods for preparing the cleaning particles, especially in the more desired shapes such as ellipsoids and spheres and at the smaller sizes such as from 1 to 10 mm in length.

Problems solved by technology

Furthermore, the use of inorganic filler particles having a D50 size of at least 10 microns and a D90 size of at least 40 microns permits higher proportions of inorganic filler to be incorporated into the thermoplastic resin without affecting the particle melt rheology and final morphology so adversely that it becomes difficult or impractical to find suitable methods for preparing the cleaning particles, especially in the more desired shapes such as ellipsoids and spheres and at the smaller sizes such as from 1 to 10 mm in length.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

[0115]Examples A to D in Table 1 all incorporate a particulate inorganic filler having a D50 particle size of less than 10 microns and a D90 particle size of less than 40 microns. It was shown that as the wt % of this smaller particle size filler approached and extended above 60 wt % the particle shape / size characteristics of the resulting cleaning particles became less optimal for laundry applications. In particular, these cleaning particles exhibited some degree of defects including: snake skinning, tails, cutting edges and particle to particle non-uniformity in shape and size and showed shapes which were far from the desired smooth ellipsoidal shape. As the weight incorporation of the filler increased the aspect ratio soon became undesirably higher than 1.2, indicating that the particles were becoming more cylindrical and less ellipsoidal. It was noted that the cleaning particles with undesirable shape characteristics using Blanc® Fixe N also demonstrated significant variations in

Example

[0116]Examples E to H in Table 2 all incorporate a particulate inorganic filler having a D50 particle size of at least 10 microns and having a D90 particle size of at least 40 microns. In addition to the desirable density results in Table 1 it was surprisingly possible to obtain cleaning particles with wt % incorporation of the particulate inorganic filler which approached or exceeded 60 wt % and which had excellent shape characteristics. That is to say Examples E to H had smooth ellipsoidal shapes which were substantially free from snake skinning, tails, cutting edges and were uniform in shape and size. The improved ellipsoidal shape is evident from the improved aspect ratios of the cleaning particles which are all <=1.2. Thus, particles having the more desired shape and density characteristics for laundry applications were even better achieved.

Example

[0117]Example I in Table 2 incorporates a particulate inorganic filler having a D50 particle size of at least 10 micron and having a D90 particle size of less than 40 microns. As can be seen the particle shape characteristics are intermediate between those of Examples A to D in Table 1 and those of Examples E to H in Table 2.

2 Cleaning

2.1 Cleaning Examples and Methods

[0118]The following cleaning particles as prepared in part 1 above were selected for cleaning experiments: Comparative Example A and Example G.

[0119]The cleaning experiments were triplicated for each cleaning particle using a Xeros washing apparatus as described in PCT patent publication WO 2011 / 098815 with a recommended dry laundry loading of 25 kg. The washing cycle was carried out using 20 kgs of a cotton flatware ballast. The washing cycle was run for 60 minutes at a temperature of 20° C. or 70 minutes at a temperature of 40° C. and using an 250 gms of Pack 1 cleaning formulation supplied by Xeros Ltd. 69 m2 of surfa

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A method for cleaning a substrate which is or comprises a textile, the method comprising agitating the substrate in the presence of a cleaning composition comprising: i. cleaning particles comprising a thermoplastic polyamide and a particulate inorganic filler having a density of at least 2.5 g/cm3, said cleaning particles having an average particle size of from 1 to 100 mm, wherein the cleaning particles have an average density of at least 1.65 g/cm3 and/or the particulate inorganic filler has a D50 particle size of at least 10 microns and/or a D90 particle size of at least 40 microns; and ii. a liquid medium.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner XEROS LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products