Nitride based semiconductor laser device

Active Publication Date: 2009-04-02
PANASONIC SEMICON SOLUTIONS CO LTD
View PDF6 Cites 15 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019]The nitride based semiconductor laser device may further include a dielectric multilayer film formed on the other facet and including the second protective film, in which the dielectric multilayer film may include an oxynitride film and an oxide film that are laminated in this order from the other facet, the oxygen composition ratio may be higher than the nitrogen composition ratio in the oxynitride film, and the second protective film may be the oxynitride film.
[0020]The nitride based semiconductor laser device may further include a dielectric multilayer film formed on the other facet and including the second protective film, in which the dielectric multilayer film may include a first oxide film, an oxynitride film, and a second oxide film that are laminated in this order from the other facet, the nitrogen composition ratio may be higher than the oxygen composition ratio in the oxynitride film, and the second protective film may be the first oxide film.
[0021]The nitride based semiconductor laser device may further include a dielectric multilayer film formed on the other facet and including the second protective film, in which the dielectric multilayer film may include a first oxynitride film, a second oxynitride film, and an oxide film that are laminated in this order from the other facet, the oxygen composition ratio may be higher than the nitrogen composition ratio in the first oxynitride film, the nitrogen composition ratio is higher than the oxygen composition ratio in the second oxynitride film, and the second protective film may be the first oxynitride film.

Problems solved by technology

In the above-mentioned nitride based semiconductor laser devices, however, the luminous efficiency of the laser light cannot be sufficiently improved.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Nitride based semiconductor laser device
  • Nitride based semiconductor laser device
  • Nitride based semiconductor laser device

Examples

Experimental program
Comparison scheme
Effect test

Example

2. Second Embodiment

[0090]As to a nitride based semiconductor laser device according to a second embodiment, the difference from the nitride based semiconductor laser device 1 according to the first embodiment will be described.

[0091]FIG. 5 is a vertical sectional view of the nitride based semiconductor laser device according to the second embodiment. In FIG. 5, a vertical section of the nitride based semiconductor laser device 1 along a [0001] direction is shown, similarly to the vertical section shown in FIG. 2 in the first embodiment. A vertical section taken along a line A2-A2 shown in FIG. 5 is the same as the vertical section of the nitride based semiconductor laser device 1 shown in FIG. 1.

[0092]A first dielectric multilayer film 210 is formed on a light emission facet 1F of the nitride based semiconductor laser device 1. The first dielectric multilayer film 210 has a structure in which an AlOXNY film (X211a and an Al2O3 film 212a are laminated in this order. Here, the refractiv

Example

3. Third Embodiment

[0096]As to a nitride based semiconductor laser device according to a third embodiment, the difference from the nitride based semiconductor laser device 1 according to the first embodiment will be described.

[0097]FIG. 6 is a vertical sectional view of the nitride based semiconductor laser device according to the third embodiment. In FIG. 6, a vertical section of the nitride based semiconductor laser device 1 along a [0001] direction is shown, similarly to the vertical section shown in FIG. 2 in the first embodiment. A vertical section taken along a line A2-A2 shown in FIG. 6 is the same as the vertical section of the nitride based semiconductor laser device 1 shown in FIG. 1.

[0098]A first dielectric multilayer film 210 is formed on a light emission facet 1F of the nitride based semiconductor laser device 1. The first dielectric multilayer film 210 has a structure in which an AlN film 211b, an AlOXNY film (X212b, and an Al2O3film 213b are laminated in this order. The

Example

4. Fourth Embodiment

[0102]As to a nitride based semiconductor laser device according to a fourth embodiment, the difference from the nitride based semiconductor laser device 1 according to the first embodiment will be described.

[0103]FIG. 7 is a vertical sectional view of the nitride based semiconductor laser device according to the fourth embodiment. In FIG. 7, a vertical section of the nitride based semiconductor laser device 1 along a [0001] direction is shown, similarly to the vertical section shown in FIG. 2 in the first embodiment. A vertical section taken along a line A2-A2 shown in FIG. 7 is the same as the vertical section of the nitride based semiconductor laser device 1 shown in FIG. 1.

[0104]A first dielectric multilayer film 210 is formed on a light emission facet 1F of the nitride based semiconductor laser device 1. The first dielectric multilayer film 210 has a structure in which an AlOXNY film (X211c, an AlOXNY film (X>Y) 212c, and an Al2O3 film 213c are laminated in thi

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

One facet of a nitride based semiconductor laser device is composed of a cleavage plane of (0001), and the other facet thereof is composed of a cleavage plane of (000 1). Thus, the one facet and the other facet are respectively a Ga polar plane and an N polar plane. A portion of the one facet and a portion of the other facet, which are positioned in an optical waveguide, constitute a pair of cavity facets. A first protective film including nitrogen as a constituent element is formed on the one facet. A second protective film including oxygen as a constituent element is formed on the other facet.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner PANASONIC SEMICON SOLUTIONS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products