Method of reducing density by means of gas generating agent

Inactive Publication Date: 2005-05-03
SASOL CHEM IND LTD
View PDF7 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0028]It is believed that the gas generating agent will be useful in more concentrated solutions where less water is available to evaporate and consequently to create porosity.
[0029]Hollow microspheres (also known as microballoons) may also be used in combination with the gas generating agent. The hollow microspheres may be used to increase the detonation efficiency, sensitivity and velocity of detonation of fuelled prills. Any type of hollow microsphere may be used but preferably hollow microspheres are used which do not contain a composition which may decompose at high temperatures to form an acid. One such compositio

Problems solved by technology

The process of drying the prills is expensive and the drying apparatus used is also capital intensive.
However, it was found that it is very difficult to control the rate of the gas release and bubble size when gas is developed in situ in this manner.
When the gas generation is too much the progressively formed crust,

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 2

[0046]A pan granulator was used to form AN granules with a reduced density by introducing a gas generating agent into the AN.

[0047]The AN to be particularized comprised 99.5% AN and 0.5% water. The AN was provided in the form of a melt at about 170° C. and the pH of the AN was 3.8.

[0048]The gas generated agent was again in the form of precipitated CaCO3 with a particle diameter of about 0.33 μm.

[0049]A pan granulator and seed material (in the form of particulated ammonium nitrate of a suitable size) were used to form the AN melt into granules. In test 1, the seed material was introduced into the pan granulator and was sprayed with the AN melt which formed into granules. In test 2 the seed material was mixed with the CaCO3. This mixture was introduced into the pan granulator and sprayed with the AN melt. The granulated AN which formed contained about 0.1% (mass / mass) CaCO3. In test 3 the CaCO3 was made up as an aqueous suspension containing 20% mass CaCO3 / mass aqueous suspension. Th

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

This invention relates to a method of reducing density in an ammonium nitrate product. The method comprises providing a gas generating agent in the form of a water-insoluble solid compound capable of generating gas by chemical reaction and providing an ammonium nitrate product. The water-insoluble solid gas generating agent is introduction into the ammonium nitrate product under conditions causing gas generation by the gas generating agent in the ammonium nitrate product. The ammonium nitrate product is particulated to form a particulated prilled ammonium nitrate product with reduced density. The invention also relates to a particulated ammonium nitrate product produced by this method and to the use of a gas generating agent in the form of a water-insoluble solid compound reduce density in a particulate ammonium nitrate product.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner SASOL CHEM IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products