Solid type rubber-based pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet thereof

Inactive Publication Date: 2010-02-18
NITTO DENKO CORP
View PDF4 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0023]As described above, the rubber-based pressure-sensitive adhesive composition of the invention includes the acrylic rubber as the base component and is solid at ordinary temperatures. Therefore, the pressure-sensitive adhesive sheet excellent in heat resistance and durability and satisfying adhesive strength and high-temperature holding power can be produced by crosslinking treatment of such pressure-sensitive adhesive

Problems solved by technology

However, this is of an organic solvent dissolution type, similarly to general acrylic pressure-sensitive adhesives, so that it is necessary to use an organic solvent which causes environmental pollution in large amounts.
Further, there has also been a problem that one reduced in viscosity can only be thinly applied.
However, it nec

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0043]Into a 3-liter pressure kneader heated at 150° C., 1,500 g of an acrylic rubber (Mooney viscosity (ML1+4, 100° C.):30) including a copolymer of 95 parts of butyl acrylate and 5 parts of acrylic acid was introduced, and kneaded for 2 minutes. Then, 750 g of a terpene-phenol resin (“Mighty Ace G125” manufactured by Yasuhara Chemical Co., Ltd.) was introduced in several batches thereinto as a tackifier, followed by kneading for about 15 minutes. Further, 300 g of a polyether ester (“ADK CIZER RG735” manufactured by ADEKA Co., Ltd.) was introduced in several batches thereinto as a softener, followed by kneading for about 15 minutes.

[0044]Finally, 30 g of an isocyanate-based crosslinking agent (“Coronate HX manufactured by Nippon Polyurethane Industry Co., Ltd.) was introduced thereinto as a crosslinking agent, followed by kneading for about 5 minutes. Then, the resulting product was taken out of the kneader to prepare a solid type rubber-based pressure-sensitive adhesive composition.

example 2

[0051]Into a 3-liter pressure kneader heated at 130° C., 1,500 g of an acrylic rubber (Mooney viscosity (ML1+4, 100° C.):30) including a copolymer of 70 parts of butyl acrylate, 30 parts of ethyl acrylate and 5 parts of hydroxyethyl acrylate was introduced, and kneaded for 2 minutes. Then, 750 g of a terpene-phenol resin (“Mighty Ace K125” manufactured by Yasuhara Chemical Co., Ltd.) was introduced in several batches thereinto as a tackifier, followed by kneading for about 10 minutes. Further, 300 g of an acrylic polymer tackifier (“Arufon UP1000” manufactured by Toagosei Co., Ltd.) was introduced in several batches thereinto as a softener, followed by kneading for about 10 minutes.

[0052]Finally, 30 g of an isocyanate-based crosslinking agent (“Coronate HX manufactured by Nippon Polyurethane Industry Co., Ltd.) was introduced thereinto as a crosslinking agent, followed by kneading for about 2 minutes. Then, the resulting product was taken out of the kneader to prepare a solid type rubb

example 3

[0055]Into a 3-liter pressure kneader heated at 130° C., 1,500 g of an acrylic rubber (Mooney viscosity (ML1+4, 100° C.):30) including a copolymer of 95 parts of butyl acrylate and 5 parts of hydroxyethyl acrylate was introduced, and kneaded for 2 minutes. Then, 750 g of a terpene-phenol resin (“YP90L” manufactured by Yasuhara Chemical Co., Ltd.) was introduced in several batches thereinto as a tackifier, followed by kneading for about 10 minutes. Further, 150 g of a polyether ester (“ADK CIZER RG735” manufactured by ADEKA Co., Ltd.) was introduced in several batches thereinto as a softener, followed by kneading for about 10 minutes.

[0056]Finally, 7.5 g of an isocyanate-based crosslinking agent (“Coronate HX manufactured by Nippon Polyurethane Industry Co., Ltd.) was introduced thereinto as a crosslinking agent, followed by kneading for about 2 minutes. Then, the resulting product was taken out of the kneader to prepare a solid type rubber-based pressure-sensitive adhesive composition.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Login to view more

Abstract

The present invention relates to a solid type rubber-based pressure-sensitive adhesive composition, which is prepared by adding a tackifier, a softener, and an isocyanate-based crosslinking agent reactable with active hydrogen into an acrylic rubber containing a monomer having an active hydrogen-containing functional group as a copolymerization component to thereby obtain a solventless and nonaqueous pressure-sensitive adhesive composition, and particularly it relates to a solid type rubber-based pressure-sensitive adhesive composition having the above-mentioned constitution, in which the above-mentioned acrylic rubber includes a copolymer containing butyl acrylate as a main component, and as the copolymerization component a monomer having a hydroxyl group or a carboxyl group as the active hydrogen-containing functional group.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner NITTO DENKO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products