Sensor device and residual stress detection system employing same

a technology of residual stress and sensor device, which is applied in the direction of instruments, heat measurement, specific gravity measurement, etc., can solve the problems of inability to realize real-time detection, inability to meet the requirement of on-site measurement, and inability to realize on-site measurement with x-ray diffraction, etc., to achieve enhanced reliability, reduce size, and improve integration

Active Publication Date: 2015-10-22
BEIJING INSTITUTE OF TECHNOLOGYGY
View PDF14 Cites 19 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The patented technology allows for accurate measurements over a wide range of temperatures by acquiring data at very fast speeds while also being able to accurately measure environmental factors like pressure or humidity levels. This makes it possible to improve the accuracy and reliability of measuring physical properties such as strain and deformation without any errors caused by changes in external conditions.

Problems solved by technology

This patent describes different methods used to measure residual stress during manufacture or use of materials. These methods can involve holes drilled into them or X-ray diffraction, but they are limited in their ability to provide accurate measurements over large areas without causing damage. Ultrasonic waves also require specific treatments to ensure reliable results, while LCR waves only work within certain ranges of frequencies. However, these technical problem addressed by this patent is how to achieve more precise and efficient stress measurement through ultrasound technology.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Sensor device and residual stress detection system employing same
  • Sensor device and residual stress detection system employing same
  • Sensor device and residual stress detection system employing same

Examples

Experimental program
Comparison scheme
Effect test

embodiment 1

[0032]The near-surface residual stress detection system for metal materials, includes two major parts, that are hardware and software, and auxiliary equipment. As shown in FIG. 1, based on a computer platform, the present invention mainly comprises several parts, such as an exciting and receiving probe, an ultrasonic transmittance card, a data acquisition card, a computer system, a transmission line, etc. When there is a large temperature difference, the plexiglass wedge 5 (sonolucent wedge) and top fixed plate 2 would experience deformation caused by thermal expansion and contraction. A temperature acquisition card is further installed to acquire real-time ambient temperature by software (shown by the hollow arrow in FIG. 1), and eliminate the deformation of mechanical part of the system and effect on sound speed both caused by change of ambient temperature, so that the system can be adapted for measurement under a complex environment and have a wider range of applications. The high f

embodiment 2

[0042]Sensor device 23 may also employ other configurations. For example, when domestic and foreign designers are designing the configuration of ultrasonic oblique incident sensor, it is common for them to fix the ultrasonic transducer in the plexiglass wedge with bolts or special fixture. While for this configuration, in a case where the transducer is coupled with the wedge, every time the transducer need to be removed and mounted again after coating with the coupling agent, resulting in an increased inconvenience.

[0043]In the present embodiment, as shown in FIG. 3, the sensor device comprises plexiglass wedges 5, a magnetic base 7 and fixed plates 4. Threads are processed in the inclined planes of the plexiglass wedges 5, so that the ultrasonic transducers 3 are threadedly fixed with the plexiglass wedges 5. Cylindrical cavities 9 are processed inside the plexiglass wedge 5, with diameters slightly larger (such as 4 mm larger) than that of the circular chips of the transducers 3. The

embodiment 3

[0053]Currently the measurement of residual stress by applying ultrasonic waves is mostly carried out for flat plates, while pipes can be seen everywhere in daily life. When the residual stress present in the inner or outer surface of the pipes is too large, a serious accident may be caused. Therefore, the stress detection of pipes has attracted more and more attention. When measuring the surface residual stress of curved surfaces such as pipes, an appropriate adjustment shall be made to the structure of the detected system.

[0054]When measuring the residual stress of the inner or outer surface of a pipe, the bottom of each plexiglass wedge 5 is machined, so as to have the same curvature as that of the pipe. Alternatively, a bottom surface contacting member with the same curvature of the pipe is mounted on the bottom surface of each plexiglass wedge 5. In addition, the magnetic base 7 can be mounted between two plexiglass wedges 5, providing a greater magnetic force to allow the couplin

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A sensor device, comprising two symmetrically disposed sonolucent wedges (5), and a connecting piece for fixedly connecting the two sonolucent wedges (5); the upper surfaces of the sonolucent wedges (5) are provided with inclined planes; installation holes are formed on the inclined planes; transducers (3) are installed in respective installation holes; one transducer (3) is used to generate ultrasonic waves, and the other transducer (3) is used to receive the ultrasonic waves generated by the previous transducer (3). The residual stress detection system comprises a sensor device, an ultrasonic transmission card, and a data acquisition card.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products