Electrode, power storage device, electronic device, and manufacturing method of electrode

Active Publication Date: 2016-06-30
SEMICON ENERGY LAB CO LTD
View PDF1 Cites 13 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0029]One embodiment of the present invention can provide a power storage device with excellent charging and discharging characteristics. One embodiment of the present invention can provide a power storage device in which a decrease in capacity in charge and discharge cycles is prevented. One embodiment of the present invention can provide a power storage device with a high degree of safety or high reliability.
[0030]One embodiment of the present invent

Problems solved by technology

Development of lithium ion secondary batteries is susceptible to improvement in terms of charge

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Example

Embodiment 1

[0073]In this embodiment, an electrode of one embodiment of the present invention is described with reference to FIGS. 1A to 1D.

[0074]In this embodiment, an example in which an electrode of one embodiment of the present invention is applied to a lithium ion secondary battery is described; however, the use of an electrode of one embodiment of the present invention is not limited to this. An electrode of one embodiment of the present invention can be applied to any of a battery, a primary battery, a secondary battery, a lithium air battery, a lead storage battery, a lithium ion polymer secondary battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a nickel-iron storage battery, a nickel-zinc storage battery, a silver oxide-zinc storage battery, a solid-state battery, an air cell, a zinc-air battery, a capacitor, a lithium ion capacitor, an electric double layer capacitor, an ultracapacitor, a supercapacitor, and the like.

[0075]An electrode of one embo

Example

[0096]For example, as described later in Example 2, when polybenzoxazine and PVdF are used as the binder, discharge capacity can be higher than when PVdF is used alone as the binder.

[0097]The binder may be a composite material of a compound with a benzoxazine ring and another compound. For example, the binder may be a copolymer of a benzoxazine resin and any of a fluororesin, an epoxy resin, a phenol resin, and the like.

[0098]The electrode of one embodiment of the present invention can be used in a power storage device. The power storage device includes a pair of electrodes (a positive electrode and a negative electrode), and the electrodes each include an active material layer. Each of the positive electrode active material layer and the negative electrode active material layer preferably includes a binder.

[0099]In the power storage device of one embodiment of the present invention, polybenzoxazine is used as a binder in at least one of the positive electrode active material layer and

Example

Embodiment 2

[0161]In this embodiment, an active material that can be used for the electrode of one embodiment of the present invention is described with reference to FIGS. 2A and 2B, FIG. 3, FIGS. 4A and 4B, and FIG. 5.

[0162]Note that an active material generally refers only to a material that is involved in intercalation and deintercalation of ions functioning as carriers; however, an active material described in this specification and the like also includes a layer (coating layer) that covers an “active material” in some cases.

[0163]In this embodiment, a “particle containing a lithium manganese complex oxide” that can be used for an active material and a manufacturing method thereof will be described.

[0164]A lithium manganese complex oxide is strongly basic. For its resistance to a base, polybenzoxazine can be favorably used as a binder in the case where an active material is formed using a lithium manganese complex oxide.

[0165]When the electrode including the active material describ

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A power storage device with excellent charge and discharge characteristics. A power storage device in which a decrease in capacity in charge and discharge cycles is inhibited. An electrode which includes a current collector and an active material layer and in which the active material layer includes an active material and a binder and the binder includes polybenzoxazine. An electrode that includes polybenzoxazine and another material as a binder. A basic material may be used as the active material. The electrode may be formed under high temperatures.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products