Fluorescent proteins

a fluorescent protein and protein technology, applied in the field of new fluorescent proteins, can solve the problems of prolonged excitation period damaging cells and difficult detection, and achieve the effect of improving the usefulness of fluorescent proteins

Inactive Publication Date: 2006-02-21
FISHER BIOIMAGE
View PDF4 Cites 2 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The present invention relates to new fluorescent protein called Fluorescein (F) which can be used to study how cells function properly. When exposed to light with specific wavelengths, it emits strong green color signals. These fluorescers have been found to show more than their original form in cells grown under certain conditions. By comparing these fluoresceries to other fluorophores, researchers are able to better understand how different parts of the body work together.

Problems solved by technology

The technical problem addressed in this patent is how to create a fluorescer called GFP that can be used to detect changes in cellular processes without causing damage to the cells themselves.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Fluorescent proteins
  • Fluorescent proteins
  • Fluorescent proteins

Examples

Experimental program
Comparison scheme
Effect test

example 1

Construction of GFP Plasmids

[0075]Plasmids pEGFP-N1 (GenBank accession number U55762) and pEGFP-C1 (GenBank accession number U55763) both contain a derivative of GFP in which one extra amino acid has been added at position two to provide a better translational start sequence (a Kozak sequence) and so the total number of amino acids is increased by one to 239 instead of the 238 found in wildtype GFP. Therefore the denomination of mutations in GFP in these plasmids strictly should be referred to as e.g. F65L rather than F64L. However, to avoid this source of confusion and because the GFP community has adopted the numbering system of wildtype GFP in its communications, the numbers used here conform to the commonly used naming of mutations in wildtype GFP. The relevant mutations in this respect are F64L, S65T, and E222G.

[0076]Plasmids pEGFP-N1 and pEGFP-C1 contain the following mutations in the chromophore: F64L and S65T. The codon usage of the GFP DNA sequence has been optimized for expre

example 2

Determination of Spectral Properties of Proteins EGFP and eF64L,E222G

[0092]Plasmids expressing EGFP from plasmid pEGFP-N1 (also referred to as PS279), and eF64L,E222G from plasmid PS699 were transfected into E.Coli TOP10 cells (Invitrogen) using lipofectamine 2000 (from Life Technologies) according to manufacturers recommendations. After 5 days cells were collected and resuspended in extraction buffer 50 mM TRIS(pH 8.0) with 1 mM DTT. Cells were lysed by 3 cycles of freeze-thaw. Cell debris was centrifuged out at 10000 g in acooled centrifuge. NaCl was added to 100 mM.

[0093]The cell pellets were resuspended in 1000 μl of H2O each (2-fold dilution relative to volumes of pelleted cultures) and transferred to 1.0×0.5 cm plastic cuvettes and the following excitation and emission spectra were recorded on a Perkin Elmer LS50B luminescence spectrometer:

[0094]

Excitation spectrum:Excitation at 350–525 nm (5 nm slit width) Emission 560 nm (10 nm slitwidth)Data presented in FIG. 1.Emission spectr

example 3

Determination of Time to Fluorescence of EGFP and eF64L,E222G in CHO Cells

[0097]Three, 2 well chambers with CHOhIR cells were transfected with plasmid PS279 expressing EGFP and plasmid PS699 expression eF64L,E222G using the Lipofectamine transfection method.

[0098]Fluorescence from the cells was checked at regular intervals after transfection.

[0099]Lipofectamine 2000 transfection method was used to transfect EGFP and eF64L,E222G in one, 8-well chamber with CHOhIR cells. Fluorescence from the cells was checked at regular intervals after transfection as described above. Images were taken from the same cell fields at each interval. Three different fields were observed for each plasmid. The microscope and camera settings were the same for each image. Optimal exposure time was taken from a chamber of cells with full EGFP expression (transfected 24 hours previously) to ensure the exposure does not saturate. The first images were taken from 45 minutes to 1 hour post transfection, thereafter wi

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Timeaaaaaaaaaa
Widthaaaaaaaaaa
Widthaaaaaaaaaa
Login to view more

Abstract

A GFP with an F64L mutation and an E222G mutation is provided. This GFP has a bigger Stokes shift compared to other GFPs making it very suitable for high throughput screening due to a better resolution. This GFP also has an excitation maximum between the yellow GFP and the cyan GFP allowing for cleaner band separation when used together with those GFPs.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner FISHER BIOIMAGE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products