On site microbial bioremediation system and method of using said system

a bioremediation system and microbial technology, applied in biological water/sewage treatment, biomass after-treatment, enzymology, etc., can solve the problem that no other system presently provides such a simple system

Inactive Publication Date: 2000-07-11
YORK BILLY G +3
View PDF14 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

It is believed that the success of continued use of the present on site bioremediation system can be attributed to the continuous addition of new "stock" or originally selected microorganisms into the culture vessel along with fresh nutrient media. This step provides an advantage of obtaining microbial cultures that survive in high numbers and actively metabolize the waste at the site. Further, by the continuous addition of the stock microorganism to the culture vessel, mutations to the culture of microorganisms that could have resulted in changed properties can be minimized. Such mutations could result in a microbial culture that is no longer able to metabolize the waste it was originally selected to metabolize. However, by periodically or continuously adding the original stock microorganisms, the culture continues to have an influx of microorganisms with characteristics responsible for metabolizing the waste.

Problems solved by technology

However, these systems use elaborate culturing systems, such as using portioned chambers or two different chambers to prepare microorganisms for delivery to a waste.
No other system presently provides such a simple system for producing live, active, and multiplying microorganisms at the site to be treated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example

The claimed bioremediation system was used to prepare a culture of active, logarithmically growing microorganisms to treat wastewater from a lift station of a large metropolitan waste treatment facility using the method as described above.

Microbial Blend LRC-2 designated for treatment of wastewater purchased from LRC Technologies, LLC was used to prepare the stock microorganisms. Two oz. of LRC-2 was diluted into 5 gallons of water to make the stock solution that is placed in the stock microorganism containers. The nutrient media was composed of 13 grams of phosphoric acid and 600 grams of ammonium nitrate dissolved in 5 gallons of water. This nutrient media was placed in the nutrient media containers.

A 110 gallon culture vessel was filled with water and heated to 98.degree. F. When this temperature was reached, the culture vessel (vessel #1) was "booted up" by adding 16 oz. of the stock microorganisms and 40 oz. of the nutrient media to the heated water. Four oz. of stock microorga...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
timeaaaaaaaaaa
Login to view more

Abstract

An on site bioremediation system that delivers logarithmically growing, active microorganisms from the culture vessel directly to the biodegradable waste to be metabolized is disclosed. The system includes a controller, culture vessel and separate containers of stock microorganisms and nutrient medium. The periodic or continuous addition of stock microorganisms and fresh nutrient media is controlled by a computer. After a particular cell density is reached, the active, logarithmically growing microorganisms flow out of the system to the waste site on a periodic or continuous basis.

Description

Applicants' invention relates to an on site bioremediation system, and methods of using the on site system to degrade biodegradable waste. More specifically, the present invention relates to an on site bioremediation system for preparing active, logarithmically growing microorganisms and delivering these logarithmically growing microorganisms directly to the biodegradable waste. There is a need in the field of bioremediation to deliver logarithmically actively growing microorganisms directly to the site of the waste rather than delivering dormant microorganisms that have been stored in containers as is generally how bioremediation is performed in the field.Bacterial culturing systems are known that produce bacteria on site, for example, at a waste treatment plant. However, these systems use elaborate culturing systems, such as using portioned chambers or two different chambers to prepare microorganisms for delivery to a waste. Additionally, it has been shown in some systems that it ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): B09C1/10B09B3/00
CPCB09B3/00B09C1/10Y10S435/821Y10S435/802
Inventor YORK, BILLY G.MAYER, JACK A.ANDREWS, JR., JOE A.CLEVELAND, ARTHUR G.
Owner YORK BILLY G
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products