Nanoscale ordered composites of covalent ceramics for high-temperature structural applications via block-copolymer-assisted assembly and method of making

Active Publication Date: 2005-07-21
GENERAL ELECTRIC CO
View PDF8 Cites 49 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0005] The present invention meets these and other needs by providing a method of making nanoscale ordered composites of covalent ceramics through block copolymer assisted assembly. The present invention also provides ceramic materials having nanoscale ordered structures that are thermally stable up to high temperatures. At least one polymeric precursor is mixed with a block copolymer, and self-assembly of the mixture proceeds through an annealing process. During the annealing step, the polymeric precursors cross-link to form a structure that is robust enough to survive the order-disorder transition (also referred to hereinafter as “ODT”) temperature of both the block copolymer and the pyrolysis process, leading to ordered nanocomposites of high temperature ceramic materials. Voids left behind by decomposition of the block copolymer can be closed during the pyrolysis to form nonporous dense material. The method yields a variety of structures and morphologies.

Problems solved by technology

Current synthetic techniques such as self-assembly approach have not yielded hierarchically-ordered non-oxide ceramic materials for high temperature applications.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Nanoscale ordered composites of covalent ceramics for high-temperature structural applications via block-copolymer-assisted assembly and method of making
  • Nanoscale ordered composites of covalent ceramics for high-temperature structural applications via block-copolymer-assisted assembly and method of making
  • Nanoscale ordered composites of covalent ceramics for high-temperature structural applications via block-copolymer-assisted assembly and method of making

Examples

Experimental program
Comparison scheme
Effect test

Example

[0017] In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that terms such as “top,”“bottom,”“outward,”“inward,” and the like are words of convenience and are not to be construed as limiting terms.

[0018] Referring to the drawings in general and to FIG. 1 in particular, it will be understood that the illustrations are for the purpose of describing a preferred embodiment of the invention and are not intended to limit the invention thereto.

[0019] A ceramic material of the present invention is shown in FIG. 1. FIG. 1 is a transmission electron microscopy (TEM) image of a C / Si—C—N(—O) nanocomposite of the present invention. The ceramic material 100 comprises at least one ceramic phase 110. The at least one ceramic phase 110 has an ordered structure 120 on a nanoscale. Ordered structure 120 is thermally stable up to a temperature of at least about 800° C. The ceramic materia

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to view more

Abstract

A method of making nanoscale ordered composites of covalent ceramics through block copolymer-assisted assembly. At least one polymeric precursor is mixed with a block copolymer, and self-assembly of the mixture proceeds through an annealing process. During the annealing step, the polymeric precursor cross-links to form a structure robust enough to survive both the order-disorder transition temperature the block copolymer and the pyrolysis process, yielding ordered nanocomposites of high temperature ceramic materials. The method yields a variety of structures and morphologies. A ceramic material having at least one ceramic phase that has an ordered structure on a nanoscale and thermally stable up to a temperature of at least about 800° C. is also disclosed. The ceramic material is suitable for use in hot gas path assemblies, such as turbine assemblies, boilers, combustors, and the like.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products