Polyvinyl Chloride Resin Composition for Automotive Electric Wire, and Ultrathin-Wall Low-Voltage Electric Wire for Automobile

Active Publication Date: 2015-08-27
YAZAKI CORP
View PDF2 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0026]The polyvinyl chloride resin composition for automotive electric wire according to the first aspect of the invention has been configured so as to comprises (A) 100 parts by weight of polyvinyl chloride and, incorporated thereinto, (B) 24.0-26.0 parts by weight of a trimellitic-acid-based ester plasticizer, (C) 5-10 parts by weight of a non-lead stabilizer, (D) 2-10 parts by weight of a reinforcing agent, (E) 2-8 parts by weight of an impact absorber, and (F) 0.3-1.2 parts by weight of a processing aid, and has a Shore D hardness of 68 or higher and a cold resistance, as a property of the material, of −10° C. or below.
[0027]The ultrathin-wall low-voltage electric wire for automobile according to the second aspect of the invention has been configured by extrusion coating in a thickness of 0.15-0.25 mm using a polyvinyl chloride resin composition for automotive electric wires which comprises (A) 100 parts by weight of polyvinyl chloride and, incorporated thereinto, (B

Problems solved by technology

The composition disclosed in JP-A-10-241462 has excellent performance with respect to abrasion resistance, but has the possibility of impairing other properties (e.g., low-temperature characteristics) required of electric wires.
The composition actually produced by incorporating up to 23.5 parts by weight of n-TOTM (octyl ester of trimellitic acid) into 100 parts by weight of polyvinyl chloride has a problem in that the cold resistance of the material has a value within a plus-temperature r

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1 to example 6

[0063]In Example 1 to Example 6, use was made of a resin composition configured by compounding (A) 100 parts by weight of polyvinyl chloride (specifically, one having an average degree of polymerization of 1,300) with (B) 24 parts by weight of a trimellitic-acid-based ester plasticizer (n-TOTM), (C) 5 parts by weight of a non-lead stabilizer (specifically, a Ca / Zn-based stabilizer), (D) 5 parts by weight of a reinforcing agent (specifically, 2 parts by weight of synthetic calcium carbonate and 3 parts by weight of fine-powder silica), (E) 3 parts by weight of an impact absorber (specifically, MBS (methyl methacrylate / butadiene / styrene)), and (F) 0.7 parts by weight of a processing aid (specifically, 0.5 parts by weight of PMMA (methyl methacrylate copolymer) and 0.2 parts by weight of a polyethylene wax). In Example 1 to Example 3, an electric wire having a size of 0.35 mm2 was coated with the resin composition in thicknesses of 0.15 mm, 0.20 mm, and 0.25 mm, respectively, to con

example 7 and example 8

[0077]In Example 7 and Example 8, use was made of a resin composition configured by compounding (A) 100 parts by weight of polyvinyl chloride (specifically, one having an average degree of polymerization of 1,300) with (B) 26 parts by weight of a trimellitic-acid-based ester plasticizer (n-TOTM), (C) 5 parts by weight of a non-lead stabilizer (specifically, a Ca / Zn-based stabilizer), (D) 5 parts by weight of a reinforcing agent (specifically, 2 parts by weight of synthetic calcium carbonate and 3 parts by weight of fine-powder silica), (E) 3 parts by weight of an impact absorber (specifically, MBS (methyl methacrylate / butadiene / styrene)), and (F) 0.7 parts by weight of a processing aid (specifically, 0.5 parts by weight of PMMA (methyl methacrylate copolymer) and 0.2 parts by weight of a polyethylene wax). In Example 7, an electric wire having a size of 0.35 mm2 was coated with the resin composition in a thickness of 0.15 mm to configure an insulated electric wire. In Example 8,

example 9 and example 10

[0096]In Example 9 and Example 10, use was made of a resin composition configured by compounding (A) 100 parts by weight of polyvinyl chloride (specifically, one having an average degree of polymerization of 1,300) with (B) 25 parts by weight of a trimellitic-acid-based ester plasticizer (n-TOTM), (C) 5 parts by weight of a non-lead stabilizer (specifically, a Ca / Zn-based stabilizer), (D) 5 parts by weight of a reinforcing agent (specifically, 2 parts by weight of synthetic calcium carbonate and 3 parts by weight of fine-powder silica), (E) 3 parts by weight of an impact absorber (specifically, MBS (methyl methacrylate / butadiene / styrene)), and (F) 0.7 parts by weight of a processing aid (specifically, 0.5 parts by weight of PMMA (methyl methacrylate copolymer) and 0.2 parts by weight of a polyethylene wax). In Example 9, an electric wire having a size of 0.35 mm2 was coated with the resin composition in a thickness of 0.20 mm to configure an insulated electric wire. In Example 10

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to view more

Abstract

The polyvinyl chloride resin composition for automotive electric wire of the present invention comprises (A) 100 parts by weight of polyvinyl chloride and, incorporated thereinto, (B) 24.0-26.0 parts by weight of a trimellitic-acid-based ester plasticizer, (C) 5-10 parts by weight of a non-lead stabilizer, (D) 2-10 parts by weight of a reinforcing agent, (E) 2-8 parts by weight of an impact absorber, and (F) 0.3-1.2 parts by weight of a processing aid, and has a Shore D hardness of 68 or higher and a cold resistance, as a property of the material, of −10° C. or below.

Description

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Owner YAZAKI CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products