Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

156 results about "Optoelectronics" patented technology

Optoelectronics (or optronics) is the study and application of electronic devices and systems that source, detect and control light, usually considered a sub-field of photonics. In this context, light often includes invisible forms of radiation such as gamma rays, X-rays, ultraviolet and infrared, in addition to visible light. Optoelectronic devices are electrical-to-optical or optical-to-electrical transducers, or instruments that use such devices in their operation. Electro-optics is often erroneously used as a synonym, but is a wider branch of physics that concerns all interactions between light and electric fields, whether or not they form part of an electronic device.

Extreme ultraviolet light source

InactiveUS20050230645A1Improve efficiencyImprove performanceNanoinformaticsSemiconductor/solid-state device manufacturingAtomic elementLight energy
The present invention provides a reliable, high-repetition rate, production line compatible high energy photon source. A very hot plasma containing an active material is produced in vacuum chamber. The active material is an atomic element having an emission line within a desired extreme ultraviolet (EUV) range. A pulse power source comprising a charging capacitor and a magnetic compression circuit comprising a pulse transformer, provides electrical pulses having sufficient energy and electrical potential sufficient to produce the EUV light at an intermediate focus at rates in excess of 5 Watts. In preferred embodiments designed by Applicants in-band, EUV light energy at the intermediate focus is 45 Watts extendable to 105.8 Watts.
Owner:CYMER INC

Light guide module having embedded LED

A light guide module of optical mouse is disclosed. The light guide module comprises a LED die within a light guide input of light guide means. The light guide input comprises an internal paraboloid. Light emitted by the LED die and parallel reflected from the paraboloid is impinged on a light guide output.
Owner:SUNPLUS TECH CO LTD

Method of manufacturing a cover of a backlit display using fluorescing materials

InactiveUS6905901B1Avoid passingAvoid choiceAircraft componentsInstrument arrangements/adaptationsFluorescenceDisplay device
A backlit display allowing one or more colors to be properly illuminated. Included in the backlit display is a light source that emits light upon a backside of a substrate. A selectively applied opaque layer prevents light from a light source from passing through at least one selected portion of said substrate. Incorporated into the substrate is one or more fluorescing materials to diffuse the light and / or change the color of the light emitted from the light source.
Owner:APTIV TECH LTD

Conductive composite fiber and preparation method thereof

InactiveCN102877286ASimple processLow costPhysical treatmentFiberIce water
The invention relates to a conductive composite fiber and a preparation method thereof. The conductive composite fiber comprises a skin core structure including conductive particles and organic fibers, wherein the mass percentage composition of the conductive particles is 0.5-10%, and the mass percentage composition of the organic fibers is 90-99.5%. The preparation method comprises the following steps: (1) pre-treating the organic fibers in pretreatment liquid, and blowing; (2) soaking the fibers into water dispersion liquid of the conductive particles, ultrasonically assisting the conductive particles to outer layers of the fibers in ice water bath, soaking, drying, and soaking, cleaning and drying through hydrochloric acid solution to obtain the conductive composite fiber. According to the invention, the conductive composite fiber has the advantages of no organic solvent in preparation, greenness and environmental friendliness, simple process, low cost, continuous large-scale production, high conductivity of a product, difficulty in falling conductive components, durable conductive performance, soft hand feel and capability of being knitted; and the conductive composite fiber is used as an antistatic and electromagnetic shield material and an energy storage electrode material.
Owner:DONGHUA UNIV

Mirror process using tungsten passivation layer for preventing metal-spiking induced mirror bridging and improving mirror curvature

InactiveUS20060037933A1Prevent metal-spiking induced mirror bridgingImprove mirror curvatureDecorative surface effectsMicroelectromechanical systemsOptoelectronicsTungsten
A mirror process uses a tungsten passivation layer to prevent metal-spiking induced mirror bridging and improve mirror curvature. A mirror structure is patterned on a first sacrificial layer overlying a substrate. A tungsten passivation layer is then blanket deposited to cover the top and sidewalls of the mirror structure. A second sacrificial layer is formed overlying the tungsten passivation layer. A releasing process with an etchant including XeF2 is performed to remove the second sacrificial layer, the tungsten passivation layer and the first sacrificial layer simultaneously.
Owner:TAIWAN SEMICON MFG CO LTD

Laser Machining Apparatus with Adaptive Mirror

ActiveUS20140346155A1Stabilised betterSimple adaptationLaser beam welding apparatusOptoelectronicsInternal pressure
A laser machining apparatus comprises a laser radiation source that generates laser radiation. A first and a second adaptive mirror are provided each having a pressure chamber connected to a pressure source and a mirror substrate that bounds the pressure chamber. An internal pressure in the pressure chamber can be changed with the aid of the pressure source in such a way that the mirror substrate deforms if the internal pressure in the pressure chamber changes. The mirror substrate of the first adaptive mirror has a thickness which varies at least within a region of the mirror substrate that bounds the pressure chamber. The mirror substrate of the second adaptive mirror has a thickness which is constant over the entire region over which the mirror substrate is deformable.
Owner:LT ULTRA PRECISION TECH

Probe card

InactiveUS20050184745A1Small overall spring coefficientStably perform measurementSemiconductor/solid-state device testing/measurementElectrical measurement instrument detailsOptoelectronicsProbe card
An object of the invention is to provide a probe card capable of properly performing a measurement. A probe card according to the invention includes: probes 100 shaped to allow vertical elastic deformation; a supporting substrate 200 with the probes provided on the lower surface thereof; a main substrate 300 positioned opposing the upper surface of the supporting substrate 200; an intermediate substrate 400 disposed between the supporting substrate 200 and main substrate 300; a supporting member 500 that is a column-shaped member with one end thereof attached to the center of the supporting substrate 200 and the other end thereof attached to the intermediate substrate 400 and holds the supporting substrate 200 so that the supporting substrate 200 is inclinable; and elastic members for holding the supporting substrate 200 so that the supporting substrate 200 is in a horizontal position relative to the main substrate 300, which are provided between the supporting substrate 200 and main substrate 300.
Owner:NIHON DENSHIZAIRYO

Sensor and method for providing high transfer rate in page-based optical data storage

ActiveUS7446297B1Promote absorptionIncreased detector sensitivitySolid-state devicesMaterial analysis by optical meansOptoelectronicsPartial reflection
A sensor and method for page-based optical data storage. The sensor includes a partially-reflective mirror, a reflective mirror disposed substantially collinear with and spaced apart from the partially-reflective mirror, and an active layer disposed substantially collinear with and between the partially-reflective mirror and the reflective mirror. The partially-reflective mirror has a first and second side and transmits a portion of light incident on the first side. The reflective mirror reflects light incident on the reflective mirror toward the partially-reflective mirror. The active layer absorbs at least a portion of the light oscillating at the resonant frequency.
Owner:ORACLE INT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products