Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

91results about "Chemical vapor deposition coating" patented technology

Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition

A film having filling capability is deposited by forming a viscous polymer in a gas phase by striking an Ar, He, or N2 plasma in a chamber filled with a volatile hydrocarbon precursor that can be polymerized within certain parameter ranges which define mainly partial pressure of precursor during a plasma strike, and wafer temperature.
Owner:ASM IP HLDG BV

Reactor and method of processing a semiconductor substrate

InactiveUSRE37546E1Accurately determineEliminate needThermometer detailsRadiation pyrometryGas syringeEngineering
A reactor for processing a substrate includes a first housing defining a processing chamber and supporting a light source and a second housing rotatably supported in the first housing and adapted to rotatably support the substrate in the processing chamber. A heater for heating the substrate is supported by the first housing and is enclosed in the second housing. The reactor further includes at least one gas injector for injecting at least one gas into the processing chamber onto a discrete area of the substrate and a photon density sensor extending into the first housing for measuring the temperature of the substrate. The photon density sensor is adapted to move between a first position wherein the photon density sensor is directed to the light source and a second position wherein the photon density sensor is positioned for directing toward the substrate. Preferably, the communication cables comprise optical communication cables, for example sapphire or quartz communication cables. A method of processing a semiconductor substrate includes supporting the substrate in a sealed processing chamber. The substrate is rotated and heated in the processing chamber in which at least one reactant gas is injected. A photon density sensor for measuring the temperature of the substrate is positioned in the processing chamber and is first directed to a light, which is provided in the chamber for measuring the incident photon density from the light and then repositioned to direct the photon density sensor to the substrate to measure the reflection of the light off the substrate. The incident photon density is compared to the reflected light to calculate the substrate temperature.
Owner:KOKUSAI SEMICON EQUIP CORP

Method for treating a solid material to make it hydrophobic, material obtained and uses

InactiveUS6342268B1Simple and rapid and methodWater-repelling agents additionOther chemical processesChemical structureProduct gas
A solid material is treated, the chemical structure of which defines reactive protogenic hydrophillic functions accessible to gases, by applying at least one gas stream (3) onto at least one microdispersion (5) of at least one grafting reagent RX produced on the solid material, R being a hydrophobic group, X being chosen so that HX is volatile under normal conditions, R and X being chosen so that the reaction of RX on the hydrophillic functions produces covalent grafting of the hydrophobic group R with formation of the compound HX, it being possible for the reaction to be carried out in a solid / gas heterogeneous medium on all the reactive hydrophillic functions accessible to gases and only on these. The invention extends to the hydrophobic solid material obtained, and is applicable to the obtaining of natural or artificial fibrous or inorganic structures impermeable to water and to aqueous solutions and / or absorbing fats.
Owner:BT3 TECH

Method for uniformly and controllably coating conducting carbon layer at surface of LiFePO4 granule surface

The invention relates to a method for coating an even and controllable deposit carbon layer on the surface of LiFePO4 particles serving as lithium ion battery cathode materials for increasing the LiFePO4 conductivity. The method adopts the concrete preparation processes that: LiFePO4 powders are placed in a constant temperature zone of a chemical vapor deposition furnace, then the air in the furnace is fully discharged for inputting inert gases, after the temperature rises to the set level, a carbon source gas is input for covering a conductivity carbon film on the surface of the LiFePO4 particles evenly, the LiFePO4 coated with the carbon film has excellent conductivity which is increased by five orders of magnitude compared with the condition before coating. The chemical vapor deposition temperature ranges from 580 to 720DEG C, the deposition time is from 1 to 10 hours, and the volume percent of the carbon source gas is between 1 and 20 percent, and a sample deposited with carbon is cooled to the room temperature with a natural furnace and is then taken out. The method can cover the conductivity carbon film on the surface of each LiFePO4 particle evenly for increasing the conductivity of LiFePO4, and the thickness of the conductivity carbon film can be accurately controlled in the range of 2 to 50 nanometers through adjusting parameters (deposition temperature, deposition time and carbon source gas volume percent) of the chemical vapor deposition process.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Thin film forming device for forming silicon thin film having crystallinity

InactiveUS6192828B1Electric discharge tubesSemiconductor/solid-state device manufacturingElectric dischargeSilicon thin film
An insulating member is interposed between a film formation chamber container and a plasma chamber container. Both containers are adjacent to and communicated with each other. In the film formation chamber container, a base material holder is provided for holding the base material. Raw material gas is introduced into the plasma chamber container and ionized by high frequency electric discharge, to generate plasma. A high frequency electrode and a high frequency electric power source are provided as a plasma generating unit. There is provided a porous electrode 30, the electric potential of which is the same as that of the plasma chamber container 24, between both chambers 22, 24 to partition both chambers. A pulse electric powder source for impressing bipolar pulse voltage, in which a positive polarity portion and a negative polarity portion are alternately repeated, is provided between the base material holder and both of the plasma chamber container and the porous electrode 30, the electric potential of which is the same as that of the plasma chamber container 24.
Owner:NISSIN ELECTRIC CO LTD

Method of Fabricating Thin Film by Microplasma Processing and Apparatus for Same

InactiveUS20120021132A1Reduce necessityLiquid surface applicatorsMolten spray coatingIonRaw material
Provided is a method of fabricating, with satisfactory adhesion, a thin film of a metal or a metallic-compound, such as a metal oxide or nitride, on a substrate made of a high-melting-point material such as silicon or ceramics by using a metal or metallic-compound target as the primary raw material so as to eliminate the necessity of using harmful gases such as organometallic gas, and by using an atmospheric-pressure plasma generated under atmospheric pressure as a reaction field and also as a heat source. Additionally provided is an apparatus for fabricating the thin film. The thin-film fabrication method by microplasma processing includes the steps of disposing a raw material for thin-film fabrication in one or more tubes (A) having a uniform inner diameter throughout, introducing an inert gas and applying a high-frequency voltage to the narrow tubes (A) to generate high-frequency plasma in the narrow tubes (A), heating / evaporating the raw material while maintaining the flow rate of the plasma gas in the narrow tubes (A) and maintaining the plasma gas temperature high, ejecting the evaporated material from the narrow tubes (A) to spray it onto the substrate, heating the substrate with the plasma, and depositing the sprayed material on the substrate under atmospheric pressure.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Systems and methods for enhancing mobility of atomic or molecular species on a substrate at reduced bulk temperature using acoustic waves, and structures formed using same

ActiveUS20140199550A1Improve mobilityReduce the temperatureRadiation applicationsVacuum evaporation coatingChemical physicsAcoustic wave
Under one aspect of the present invention, a method for enhancing mobility of an atomic or molecular species on a substrate may include exposing a first region of a substrate to an atomic or molecular species that forms a molecular bond with the substrate in the first region; directing a laser pulse to a second region of the substrate so as to generate an acoustic wave in the second region, the acoustic wave having spatial and temporal characteristics selected to alter the molecular bond; and transmitting the acoustic wave from the second region to the first region, the acoustic wave altering the molecular bond between the substrate and the atomic or molecular species to enhance mobility of the atomic or molecular species on the substrate in the first region.
Owner:THE AEROSPACE CORPORATION

Method for manufacturing miniature spring mechanical sensor for film performance test

Disclosed is a manufacturing method of a micro spring mechanics sensor used for the film performance test in the testing technology field; the method includes the steps that: the metal Ti layer is sputtered on the glass sheet and processed with oxidation treatment; the whirl coating of negative photoresist, front drying and development are processed on the glass sheet after the sputtering and oxidation treatment; the graphical display of the photoresist structure is realized according to the shape of the micro spring mechanics sensor designed by the mask plate; the Ni spring layer is electroformed on the processed titanium oxides layer; the micro spring mechanics sensor is processed with flatness machining; the sedimentation of the aligning marking and the displacement marking is processed on the Ni electroplated coating through the electrodeposition technology; the micro spring mechanics sensor is finally obtained after negative photoresist, the residual glass and the Ti sputtering layer are removed. The micro spring mechanics sensor prepared by the manufacturing method in the invention has the advantages of good linearity, simple process, high resolution, low cost and being easy to be integrated with the film mechanics performance test system.
Owner:SHANGHAI JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products